SHRED DOCUMENTATION

ZONGE Data Processing GDP Data Reformat Program version 3.2x

> Barry Sanders Mykle Raymond John Rykala November, 1996

Zonge Engineering & Research Organization, Inc. 3322 East Fort Lowell Road, Tucson, AZ 85716 USA Tel:(520) 327-5501 Fax:(520) 325-1588 Email:zonge@zonge.com

TABLE OF CONTENTS

SHRED page
Introduction 5
Introduction
Usage5
Software Operation7
Calculation of Receiver Location
Survey Configurations
Rx Definitions
Sorting the data file
Splitting the data file
Data Processing Flags
Comment and Program Control Lines11
Transmitter Current Corrections
AMT Correlation Coefficient Filter11
System and Antenna Calibrate Data
Data Structure
HEADER Data Block
RPIP Data Block
CR Data Block14
TDIP Data Block
TEM Data Block14
CSAMT Data Block
CSHA Data Block
AMT Data Block15
Appendix A GDP Data Block Structures
Sample GDP HEADER BLOCK
Sample GDP RPIP BLOCK
Sample GDP CR BLOCK
Sample GDP TDIP BLOCK
Sample GDP TEM BLOCK
Sample GDP CSAMT BLOCK
Sample GDP CSHA BLOCK
Sample GDP AMT BLOCK
Appendix B SHRED Data Record Structures27
HEADER RECORD structure
RPIP RECORD structure
CR RECORD structure
TDIP RECORD structure
TEM RECORD structure
CSAMT RECORD structure
AMT RECORD structure
Appendix C GDP Calibrate Data Structures
NON-HARMONIC Calibrate Structures
HARMONIC Calibrate Structures
Appendix D File Format Changes

Introduction

The SHRED program reformats data acquired by GDP-16 and GDP-32 Geophysical Data Processors, manufactured by Zonge Engineering & Research. The GDP stores data in an internal software cache, which are transferred to an MS-DOS computer for data processing.

GDP data are in a block format, including measurements for each of up to eight (GDP-16) or sixteen (GDP-32) channels. SHRED rewrites the data in a tabular format, each line (record) representing one measurement composed of several values (fields). This format is more suitable for popular software such as Lotus 1-2-3, MathCad, and dBase.

The block formats are occasionally modified to accommodate data acquisition and processing requirements. The SHRED output files provide a more consistent set of formats, independent of the GDP software version.

SHRED recognizes seven types of data produced by the GDP: Resistivity-Phase Induced Polarization (RPIP), Complex Resistivity or Harmonic IP (CR), Time Domain Induced Polarization (TDIP), Transient Electromagnetics (TEM), Controlled-Source Audio-Frequency Magnetotellurics (CSAMT), Harmonic CSAMT (HACSAMT), and Natural-Source MT (AMT). GDP data formats are recognized beginning with version 5.05.

The GDP custom program TDCS is not recognized by SHRED.

Array types for RPIP, CR, and TDIP surveys include Dipole-Dipole (D-D), Pole-Dipole (P-D), Pole-Pole (P-P), Down-Hole (D-H), Schlumberger (SCH), and Gradient (GRD). The Laboratory (LAB) array type is defined for CR measurements.

Array types for CSAMT surveys include Grounded (AMT) and Insulated (ISL). The only HACSAMT array type is AMT. The array types for NSMT (AMT) are Vector (VEC) and Scalar (SCA).

Array types for TEM surveys include In-Loop (INL), Fixed-Loop (FXL), Coincident-Loop (COL), Moving-Loop (MVL), and LOTEM (LOT).

The SHRED program is compiled by the Microsoft "C" v6.00 compiler.

Usage

At the DOS prompt, type SHRED. A summary of the operation of the program will be displayed. To process a GDP data file, type SHRED followed by the name of the file to be processed. A GDP data dump file is expected, using the extension ".RAW" (unless the complete filename is entered). If a pathname is specified, output files will be written to the current subdirectory. Include additional options as needed.

Usage (cont'd)

```
C> shred
ZONGE ENGINEERING: 3322 E. Fort Lowell, Tucson AZ 85716, USA
SHRED 3.20: GDP DATA CONVERSION Program
MS-DOS version implemented 18 August 1993.
Usage: SHRED pathname [ [arg1] [arg2] ... ]
Arguments: (default options in uppercase)
Pathname extension : pathname.RAW
Auto file delete : yes= /a+, NO= /a-
Sort data records : YES= /s+, no= /s-
Split data records : yes= /d+, NO= /d-
Recalc Rx or Stn : RX= /Rr, stn= /Rs
Harmonic Phase Invert : yes= /p+, NO= /p-
TEM data includes : MAG= /Tm, rho= /Tr
Include Cal/Sys/Ref : yes= /c+, NO= /c-
ComBine CSAMT AND HACSAMT: yes= /b+, NO= /b-
C>
```

COMMAND LINE ARGUMENTS: (default values are capitalized)

AUTO (yes or NO)

An existing output file will not be overwritten without permission.

SORT (YES or no)

Sort data records by Stn/N-Sp, Component, Frequency, Block Number.

SPLIT (yes or NO)

Data records of different types may be written to separate files.

RECALC (RX or stn)

Rx values may be calculated for D-D, P-D and P-P arrays, when Tx and Rx refer to the shallowest N-Spacing in the data block, and each value is the dipole end with the lowest station number.

For OTHER arrays, Stn values may be recalculated, adding the Stn value to the Rx value for each channel (uses Stn as Rx offset).

	D-D,P-D,P-P	OTHER arrays	
RX:	RECALC Rx	Same Stn	
stn:	Same Rx	RECALC Stn	

PHASE INVERT (yes or no, default is AUTO)

CR D-D harmonic data are plotted in the 1st quadrant (positive phase), while data are measured in the 4th quadrant (negative phase). The GDP records inverted harmonic phase data to version 5.20. Later versions record data as measured. The Phase switch inverts the sign of harmonic phase data, for all versions and array types.

AUTO mode is used when the /P switch is not specified. Harmonic phase data for versions after 5.20 will be inverted for geometry-dependent array types (all CR array types except MMR).

TEM (MAG or rho)

TEM data records may include magnitude OR resistivity values.

CAL (yes or NO)

Include Reference channels, Calibrate, System, and SYNC blocks in the output file.

COMBINE (yes or NO)

CSAMT and HACSAMT data at one station will not be combined.

Software Operation

Type SHRED at the DOS prompt, followed by the filename to reformat, and any of several options. If a filename is not entered, instructions will be displayed.

If the input filename does not specify an extension, ".RAW" is assumed. The output filename uses the extension ".FLD", and is written to the default drive and directory.

The program reads GDP data blocks and creates one line (record) for each measurement. A measurement may consist of one (typical) or two (as for scalar CSAMT and AMT) channels of data. The GDP normally collects a series of data blocks at each of several setups, measuring components for one or more locations. A setup is defined as a sequence of data blocks with the same Program Type, Array Type, Line, Spread, A-Spacing, Tx, and Rx values.

SHRED will, by default, sort the shredded data blocks for each setup, then write the records to the output file. Refer to "Sorting the data file" for a list of the sort index fields.

The GDP program records values in an engineering format, using letters to represent the exponent. SHRED translates these letters to an exponential format:

 UNIT	EXPONENT
"T"	"e12"
"G"	"e+9 "
" M "	"е+б"
"K"	"e+3"
	11 11
"m"	"e-3"
"u"	"е-б"
"n"	"e-9"

Values that need to be recalculated are scaled in a similar manner, then included in the file. A field may have a fixed width, with the decimal location floating within the field.

If a particular value does not contain any of the unit letters, but is in a field that at times requires this scaling, three blank spaces will be added to the end of the value.

Each column in the output data file contains either the maximum number of characters allowed, or is padded with blank spaces to align columns. Each entry is treated as a string of characters, so the number of spaces between values is not critical.

Calculation of Receiver Location

The Receive (Rx) value should indicate the GDP location, for CSAMT, CSHA, AMT, and TEM surveys (by convention). Station locations are entered for each channel. The command line switch "/Rs" indicates that station values are relative to the Rx value, and a calculated station value will be included for each channel.

Dipole-Dipole, Pole-Dipole, and Pole-Pole arrays for RPIP, TDIP and CR surveys define the N-Spacing (Tx and Rx dipole relationship). By convention, the Rx value indicates the closest Rx dipole to the Tx dipole, for the channels measured. Rx locations are calculated or copied for each channel, according to the command line switch "/Rr" or "/Rs".

SHRED determines the smallest N-Spacing for each data block. The scale factor and Rx location are calculated by:

(dipole end with lowest station number) Rx: Receiver Transmitter (dipole end with lowest station number) Tx: Rxc: Receiver location for that N-Spacing min NSp: minimum N-Spacing defined by the Rx - Tx separation N-Spacing defined for each station (channel) NSp: D-D array: Scale= (Rx-Tx) / (min_NSp+1) Rxc= Tx + Scale * (NSp+1)P-D, Rx<Tx: Scale= (Rx-Tx) / (min_NSp+1) Rxc= Tx + Scale * (NSp+1)P-D, Tx<Rx: Scale= (Rx-Tx) / (min NSp) Rxc= Tx + Scale * (NSp) P-P array: Scale= (Rx-Tx) / (min_NSp) Rxc= Tx + Scale * (NSp)

Survey Configurations

SURVEY METHOD			RPIP	SURVE	Y METHOD		CSAM TEM	T	AMT	
SURVEY METHOD	>	TDIP	CR	SURVE	Y MEIHOD	>	ΤΕΜ		CSHA	
ARRAY-TYPE	LABEI	ı			ARRAY-TYPE	LABE	L			
Dipole-Dipole	D-D	*N	*N	*NC	Grounded	AMT		+SC	+SC	
Pole-Dipole	P-D	*N	*N	*NC	Insulated	ISL		+SC		
Pole-Pole	P-P	*N	*N	*NC	Scalar	SCA				+SC
Down-Hole	D-H	+N	+N	+NC	Vector	VEC				+SC
Schlumberger	SCH	+M	+M	+MC	In-Loop	INL	+S			
Gradient	GRD	+R	+R	+RC	Fixed-Loop	FXL	+S			
Laboratory	LAB			+x	CoincidentLoop	COL	+S			
Magnetometric	MMR			+ C	Moving-Loop	MVL	+S			
					LOTEM	LOT	+S			

Rx Definitions

-: undefined survey array	S: Station
+: Rx value used	N: N-Spacing
*: Rx recalculated per N-Sp,	M: A-Spacing multiplier
for /R+ switch (default)	R: A-Spacing multiplier,
x: undefined value	relative to Rx
	C: H-field value is COIL NUMBER

Sorting the data file

Each data point consists of a set of values for a range of times or frequencies. Each GDP data block contains some values for several data points, measured at one frequency. Shredded but unsorted data files require other programs to filter the data for each data point before averaging or plotting the data. SHRED simplifies this task by writing sorted records grouped by data point.

Data blocks are shredded as they are read from the input file. A single digit sequence number is incremented when any of a set of fields changes. Usually, each sequence number indicates data acquired at one survey setup (one GDP location).

A SURVEY SETUP change is defined by a change in any of these fields:

FI	ELD_NAME	TIME_DOMAIN_FIELDS	
1. Program type		9. Duty Cycle	(TEM)
2.	Array type	10. Receiver Moment	(TEM)
3.	Cal, Sys, Data blocks	11. Tx X & Y lengths	(TEM)
4.	Line number	12. Number of turns	(TEM)
5.	Spread number	13. Tx Delay, Antenna Delay	(TEM)
6.	A-Spacing	14. Frequency	(TDIP &
TEM)			
7.	Tx value		
8.	Rx value		

Each set of records with one sequence number is sorted (by default) then written to the output file. The fields used for sorting may also increment the sequence number, so that one value indicates a set of records for one data point. At this time, the sort routine can handle up to 9000 measurements per survey setup.

The SORT FIELDS for data at each SURVEY SETUP include these fields:

FIELD_NAME	SORT_DIRECTION	SEQUENCE_CHANGE
1. Station # / N-Spacing	(ascending)	yes
2. Component	(ascending)	yes
3. Frequency	(descending)	no
4. Block number	(ascending)	no

The SHRED output data file is read by Zonge data processing programs. One station or data point is identified by a set of records with the same sequence number.

If the original or SHRED data file has been edited, or several files combined into one, then the sequence number may need to be modified so that adjacent data points do not use the same sequence number.

Splitting the data file

The GDP .RAW-file may contain data for more than one survey type. All data will be written to the .FLD-file. The SPLIT option will rewrite .FLD-file data records to files that each contain one type of data. The extensions .CR, .TEM, .RP, .TD, .CSA, .CSH and .AMT will be used, according to the header record survey types.

GDP DATA PROCESSING MANUAL

Data Processing Flags

GDP data blocks define a Skip Flag to be an "x" character between the version number and the date. Skip Flags indicate data blocks that should not be included when averaging field data. The SHRED output data formats define an Average Flag to be a "0" for records that should be skipped, and a "1" for records that should be included.

Skipped data may need to be included later, so data blocks are NOT deleted. All data are included in Zonge DATPRO summary data listings (but not averaged). Survey locations (Tx, Rx, N-Sp, Stn, ...) must be accurate for skipped data blocks.

Inconsistent field procedures may result in a failure to maintain consistent polarity on any channel. Surveys using a Time Domain procedure (TDIP and TEM) are affected by a change of sign of the magnitude values. Frequency Domain procedures (RPIP, CR, CSAMT, CSHA) are affected by the phase value being inverted by pi.

The GDP does not provide for the operator to indicate that any channel has a polarity problem. The SHRED format defines a Polarity Flip Flag for each component, that defaults to "0" to indicate that there is not a problem. A Flag set to "1" indicates that data processing programs should correct the data, by inverting the sign of magnitude values (Time Domain) or adding/subtracting pi to the phase value (Frequency Domain).

SHRED defines a Skip Flag and Polarity Flip Flag for each channel. The GDP does not provide these flags. The space between the channel number and component label may be any of four values:

" ":	no change (default s	space)
"x":	SKIP FLAG for this c	channel
"-":	POLARITY FLIP FLAG f	for this channel
"b":	Both SKIP FLAG and P	POLARITY FLIP FLAG for this channel

A text editor may be used to set appropriate values according to field notes. The original format must be preserved: do not allow values to be shifted left or right. The text editor must be able to preserve the original format without adding text format characters. MS-DOS 5.00 and later provides the EDIT program, which is suitable.

The GDPRAW program preprocessed GDP-16 data prior to conversion to GDP-12 data formats and processing by GDP-12 specific programs. The GDPRAW output files contained data processing Skip Flags and, for some data types, Polarity Flip Flags. These files used the filename suffixes ".AF", ".RF", ".CF", ".EF", and ".TF". SHRED will read these files and set the flags as indicated.

The AVERAGE FLAG defaults to "1". It is set to "0" when the block SKIP FLAG is "x", the channel SKIP FLAG is "x" or "b", or the GDPRAW AVERAGE FLAG is "0". For CSAMT records that include two channels of data, the AVERAGE FLAG for the record will be set to "0" when either of the channels so indicates.

The POLARITY FLIP FLAG defaults to "0". It is set to "1" when the channel POLARITY FLIP FLAG is "-" or "b", or the GDPRAW POLARITY FLIP FLAG is "1".

Comment and Program Control Lines

Data processing programs that read .FLD-files should recognize lines defined as Comment or Program Control ("MODE") lines.

Comment lines include a "", '!', '\', or '/*' in the first column. SHRED reads comment lines and writes them to the .FLD-file.

Program control "MODE" lines include a '\$' or '\\$' in the first column. SHRED writes MODE lines to the .FLD-file without affecting program flow, except as noted later.

ZONGE data processing programs read MODE lines for names and values. The form is: "\$ PRGM_NAME: MODE_NAME= value". PRGM_NAME optionally specifies a program name, which will associate the MODE_NAME and the value to the appropriate internal variable name, value, and data type.

Transmitter Current Corrections

Data block 'Tx Curr' values may be corrected by entering the MODE line "\$ SHRED: CURRENT= value" before the first data block to be corrected. Enter additional mode lines as needed. A line "\$ SHRED: CURRENT=" will use the existing data block value.

The "Tx Curr" values will be replaced by the mode line value. Data values will not be modified, except for TEM Magnitudes that will be adjusted in volts/amp.

AMT Correlation Coefficient Filter

SHRED can reduce the size of large AMT files by rejecting measurements whose Correlation Coefficient is less than a specified value. For example, include "\$ SHRED: CL= 0.800" to limit the output file to records whose CL value is 0.800 or greater.

System and Antenna Calibrate Data

Calibrations remove amplitude change and phase shift from measured values due to antialias and powerline notch filters, and correct for gain differences between channels.

For frequency domain signals, amplitude and phase variations due to filters are removed by dividing field voltages by the normalized calibrate magnitude, and subtracting calibrate phase from measured field phase. This is done frequency-by-frequency.

For time domain signals, only amplitudes are corrected for distortion due to filtering.

Data are decalibrated by the GDP, using calibrate cache values. GDP data need to be modified if appropriate calibrates were not loaded, or other adjustment is needed. All recognized GDP data types except Natural Source AMT data can be adjusted by SHRED.

GDP DATA PROCESSING MANUAL

Only raw magnitude and phase values are corrected. Averaging programs are expected to recalculate values such as resistivity.

Modify a GDP data file by typing SHRED, the data file name, and the calibrate file name containing values in Calibrate Cache format (Appendix C). Calibrate values from the Field Data Cache are NOT appropriate! If SHRED notes a problem while reading the calibrate file, a message will be displayed, and the data file will NOT be processed.

The calibrate file may contain several sets of calibrate values. Include "\$ SHRED: INCLUDE" or "\$ SHRED: REMOVE" before each set of values. The GDP does a REMOVE: magnitude data are divided by calibrate magnitudes, and calibrate phases are subtracted from phase data.

Include good and bad sets of values in the calibrate file, preface the BAD calibrate with an INCLUDE statement, and the GOOD calibrate with a REMOVE statement.

H-field phase data measured by the CR programs prior to version CR__0520 were provided with the sign reversed (negative phase values should be positive). Corrected H-field data requires restoring the antenna calibrate, changing the sign of phase values, then removing the calibrate again (or other suitable calibrate). Due to the methods used by the GDP, the system calibrate is not involved.

Repair H-field phase data by creating a file with the original antenna calibrate. Include "\$ SHRED: FIXPHZ" before the calibrate. Append a suitable antenna calibrate (usually the same calibrate), and include "\$ SHRED: REMOVE" before it. SHRED will restore the calibrate, change the sign of the phase data, then the second calibrate will be removed to obtain the corrected results.

A system calibrate may also be used with the FIXPHZ procedure, to repair phase data for all components measured.

Calibrate files are not required to include all frequencies and channels (or coils). However, complete sets of calibrate values are recommended, with Magnitude = 1.000, Phase = 0.000 for data that does not need to be modified. No message is provided when values are provided for some frequencies or channels and not for others.

The order of calibrates does not matter. FIXPHZ values are accumulated in one buffer, INCLUDE and REMOVE values in a second. FIXPHZ values will be applied first.

Various types of data may be included in a data file that needs to be modified. However, only ONE type of data will be modified, according to the content of the calibrate file. Also, ALL data of that type will be modified. Separate data and calibrate files are required for each modification that is needed.

SUMMARY:			
\$ SHRED: REMOVE	"subtract cal"	divide by mag; subtract phz	
\$ SHRED: INCLUDE	"add cal"	multiply mag; add phz	
\$ SHRED: FIXPHZ	"add, flip phz"	multiply mag; add phz, flip sign	
			-

Data Structure

Header blocks contain information that is assumed to apply to all data blocks that follow, until another Header block occurs.

The first section of each Data block contains reference data. The second section contains one line for each channel, including measured values and reference information. A third section is included for CR, TDIP, TEM, CSHA and AMT data, containing additional measured values for each channel. The structure is unique to each survey type.

GDP-32 data provides for up to 16 channels, so the channel line formats will shift by one character when 10 or more channels are in use.

HEADER Data Block

Header blocks may appear anywhere in the data file, and one should be at the top of each data file. If a Header block is not the first block in a file, default values are used:

OPER	TX_ID	A-SP	LINE	SPREAD	JOB	
0	0	100	1	1	0	

Several lines at the end of the Header block may include an inventory of hardware installed for each GDP channel. This information will be discarded by SHRED.

Header block data are assumed to apply to each Data block that follows, until another Header block occurs, or the end of the file. A skip flag has no meaning in a Header block. Several Header blocks in sequence merely replace the data from the previous block. Only the information in the last Header block of the group is used by SHRED.

Sorted data includes a record containing the current header block information followed by the data records for each data point. This will serve as a visual divider in unsplit data files.

RPIP Data Block

The RPIP data block has a header section followed by several lines consisting of several columns of data. Each line corresponds to one data acquisition channel. The header section is read, its data formed into a string that is included at the beginning of each record written for that data block.

The value for the receiver location (Rx) is calculated for each channel to show its actual location with respect to the N-spacing (with the "/Rr" default command line switch in effect). The data are then read one line at a time and processed until the end of the block is reached.

The version and array type are not written to the output file since they are in the header block. The notch filter and calibrate values are discarded.

CR Data Block

The CR data block channel data are in the same format as RPIP data. Following the channel data is a table of magnitude and phase values for the 1st, 3rd, 5th, 7th, and 9th harmonics for each channel. SHRED matches channel data with the corresponding harmonic data.

The receiver location is copied or calculated as for RPIP data, then the channel data and harmonic values are written as one record.

CR dipole-dipole phase data are normally measured as negative values. By convention, these data are plotted in the first quadrant (positive phase) instead of the more natural fourth quadrant. This interferes with Harmonic EM measurements, so beginning with version CR_0520 the harmonic phase values are not negated by the GDP.

SHRED will automatically invert harmonic phases for all geometry-dependent array types (all CR array types except MMR). The command line switch /P is available to force SHRED to invert or not. Use /P+ to invert harmonic phases, or /P- to not invert them.

TDIP Data Block

TDIP data blocks are similar to the RPIP structure, and include window information below the channel data, where one column corresponds to each channel. Each column is transformed into a row and appended to the corresponding channel data. There are thirteen window magnitude values for each channel.

TEM Data Block

TEM data blocks are similar to the RPIP structure. The channel data lines have several columns of values, one difference being that the column containing the SEM value may now have an exponent, whereas all other survey types do not. In addition to the channel information, the TEM data block also has a table containing window times and magnitude values. Resistivity values may be included, dependent upon the array configuration.

Column labels form the first line of the window table. The GDP allows up to three channels for TEM surveys. SHRED provides for up to five channels, so the table may include eleven columns. The first column, labeled "Wn", contains window times. The rest of the columns contain magnitude or resistivity data for each channel.

The information for each channel is written to the file as a single record. The channel data are followed by the sampling delay, alias delay, first window time and sampling interval. A command line switch specifies whether to include the label "Tm" and window magnitudes, or the label "Tr" and resistivity values. If all channels were measured, the resulting record length will approach 600 characters.

CSAMT Data Block

CSAMT data blocks are also similar to the RPIP structure. One CSAMT measurement includes E- and H-field components. Each channel measures the signal from an electric dipole or magnetic coil.

SHRED will read the entire data block, then pair the E- and H-field channels as follows:

- 1. For every Ex channel found, SHRED will look at the following channels for the first Hy channel, then it includes both Ex and Hy channels in one output record.
- 2. For every Ey channel found, SHRED will look at the following channels for the first Hx channel, then it includes both Ey and Hx channels in one output record.
- 3. When the corresponding H-field data are not available, the E-field data and default H-field values will be included in the output record.
- 4. There may be an Hz channel included, which will not have any corresponding Efield data. Default E-field values and the Hz channel data will be written to the output file.

The station location will be copied or calculated according to the "/R" command line switch. If copied (/Rr switch), station locations from the channel data lines are used. Otherwise (/Rs switch), the station values are used as offsets to the Rx value.

CSHA Data Block

The CSHA data block has a format similar to the CR data block, with each channel measuring either an E-field (electric dipole) or H-field (magnetic coil) component. One complete measurement usually requires both E- and H-field data.

SHRED will read the entire data block, then before writing it to the output file the program pairs the E- and H-fields in the same manner as for CSAMT channels.

AMT Data Block

AMT data blocks are similar to the CSAMT structure, with E- and H-field channels paired. If Ex is measured, Hy must be included. If Ey is measured, Hx must be included. Hz is optional. Data are included for harmonics 1, 2, 3, 4, 5, 6, and 7.

Each data block includes a second section containing additional values for pairs of components.

Appendix A ... GDP Data Block Structures

Sample GDP HEADER BLOCK

0079 TEM 0530 93-07-10 11:01:59 13.7v INL OPER 1 TX ID 1 A-SP 100 JOB 93001 LINE 1 N SPREAD 1 100% RxM 10000 TxX 1 TxY 1 #T 1 Ref 0.113 (TEM DATA ONLY) 50 Antenna Delay 15 Alias IN (TEM DATA ONLY) Tx Delay 4 Passed 0.99863 1 DiffAmp Notch+60,3-5,9 S/N 2 DiffAmp Notch 60,3-5,9 S/N 8 Passed 0.96621 3 LoPass Notch+60,3-5,9 S/N 69 Passed 0.99767

Header block input file structure

FIELD_NAME UNI	TS	RANGE	TYPE	WIDTH	END
Line 1					
Block Number	#	0 - 9999	Integer	4	4
I ima D					
Line 2 Survey Type	_	ex:"TEM "	Character	4	4
Version Number	#	0 - 9999	Integer	4	8
Skip Flag	π _	x or space		1	9
Date da	te	dd mmm yy	Date	8	17
Time ti			Time	8	26
Voltage	v	0 - 99.9	Scaled	5	32
Array Type	-	ex:"INL"	Character	3	36
Line 3					
Operator	-	ex:"JOHN"	Character	9	14
Tx Id	-	ex:"ONE"	Character	4	25
A-Spacing	m	positive	Scaled	6 5	37 46
Tx Shunt (CR or RPIP)	52	positive	Scaled w/exp	5	40
Line 4					
Job Number	#	ex:"GOLD"	Character	5	9
Line	#	ex:"1+00"	Character	8	28
Line Direction	_	ex:"N"	Character	2	31
Spread	#	ex:"A"	Character	2	41
Ax (Grd, Sch Arrays		±0-9999999	Scaled	8	48
Bx (Grd, Sch Arrays			Scaled	8	60
Correlation Limit (AMT)#	0-0.999	Float	5	45
FFT Function (AMT) –	HANN or RECT	Character	4	50
Outlier Limit (AMT		0.01-100.00		6	65
		ON or OFF		3	69
De-Meaning (AMT) –	ON or OFF	Character	3	73
Line 5 (TEM data ONLY)	0,	50 or 100%	Character	3	3
Duty Cycle	°8 2	50 or 100% 1 - 999999	Character	3 6	-
Receiver Moment Tx Length (X)			Integer Integer	о 4	15 24
5		1 - 9999 1 - 9999	0	4	24 33
Tx Length (Y) Tx Loop turns	m #	1 - 9999 1 - 99	Integer Integer	4 2	33 39
Coil Reference Factor				5	49
	π		I I UUL	5	12
Line 6 (TEM data ONLY)					
	μs	1 - 9999	Integer	4	13
-	μs	1 - 9999	Integer	4	32
Alias Filter	-		Character	3	42
Line 7+ hardware inventor	y i	nformation, o	one line for	each cha	nnel.

00	03									
RP	RPIP0530 92-09-30 15:58:40 13.0v D-D									
Тx		11	Rx	3 N 50,6	0					
	1 Hz		1 Cyc Tx	Curr	1					
1	ON	1	2.2339	104.4	99.2	0000	0.00	19.74	225	0
2	ON	2	0.6051	105.3	107.5	0010	0.02	-3.16	-95.7	0
3	ON	3	0.2895	103.6	128.6	0020	0.00	-10.99	-171	0
4	ON	4	0.1742	104.1	154.8	0020	0.00	7.32	-199	0

RPIP input data block structure

EIELD NAME	INTEG	DANCE			END
FIELD_NAME	UNIIS	RANGE	INDE	WIDIH	END
Line 1	#	0 0000	T	4	4
Block Number	Ŧ	0 - 9999	Integer	4	4
Line 2					
Survey Type	_	ex:"RPIP"	Character	4	4
Version Number	#	0 - 9999	Integer	4	8
Skip Flag	_		Character	1	9
Date	date	dd mmm yy	Character	8	17
Time	time		Character	8	26
Voltage		0 - 99.9	Scaled	4	31
Array Type	_		Character	3	36
Line 3	ш	+0 0000000	Gapled	0	1 1
Tx value	#	±0-9999999	Scaled	8	11
Rx value	#	±0-9999999	Scaled	8	23
Notch value		ex:"OUT "		5	31
Int/Ext System		ex:"ISys"		4	36
Calibrate Voltage	v	0 - 9.999	Float	5	42
Line 4					
Frequency	Hz	ex:" 1"	Scaled	4	4
Cyc value	#	1 - 16384	Integer	5	14
Tx Current	amps	0 - 99999	Scaled	6	33
Line 4, array type LAB					
Shunt Resistor	Ω		Scaled w/exp	7	44
Rock Sample Length	Cm		Float	, 5	50
Rock Sample Area	cm ²		Float	5	56
	-			-	
Line 5: repeated for e	ach ch		ed.		
Channel Number	#	1 - 8	Integer	2	2
Skip Flag	-	sp,x,-,b	Character	1	3
Channel Type	-	ex:"ON"	Character	3	6
N-Spacing	#	0 - 99.9	Scaled	5	11
undefined	-		spaces	2	13
Fourier Magnitude	v		Scaled w/exp	8	21
Phase	mr	±6283.2	Scaled	7	29
Resistivity	Ω m		Scaled w/exp	7	37
Gains/Attenuator	###A	ex:"0000"	Character	4	42
SEM	mr		Scaled	6	49
Self Potential	mv		Scaled	7	57
Contact Resistance	Ω		Scaled w/exp	6	64
External Amp Gain	#	1 - 9	Integer	1	66

001	11												
CR	0530 9	93-0	07-04	16:0	05:29 1	2.8	8v D−D						
Тx		1 F	٢x		5 N OU	JT	ISys	1.000					
	1 Hz	1	L6 Cyc	Тx	Curr		1						
1	Ex	1	1.27	29	-1570.	8	78.51K	0000	0.0	0 - 0	.41	0	0
2	Ex	2	1.27	26	-1570.	3	78.40K	0000	0.0	0 - 0	.14	0	0
3	Ex	3	1.27	31	-1570.	6	78.15K	0000	0.0	0 0	.00	0	0
4	Ex	4	1.27	27	-1570.	3	77.65K	0000	0.0	0 -2	.20	0	0
5	Ex	5	1.27	22	-1570.	6	76.98K	0000	0.0	0 0	.00	0	0
Hai	rmonics	1			3	3			5			7.	••
_	1.2729	-1	L727.C	42	15.65m	-20	38.9	239.3	8m -23	50.1	160.0	63m .	••
2	1.2726	-1	L729.6	4	14.70m	-20	46.2	237.9	7m -23	50.3	159.0	03m .	••
3	1.2731	-1	L728.2	4	15.31m	-20	42.4	238.7	7m -23	55.4	160.0	05m .	••
4	1.2727	-1	L726.3	4	15.06m	-20	36.5	238.5	4m -23	44.5	159.	72m .	
5	1.2722	-1	L729.4	4	14.92m	-20	45.7	238.3	6m -23	60.3	159.4	47m .	

Sample GDP CR DATA BLOCK

NOTE: Harmonic data are shown through the 7th harmonic magnitude.

CR input data file structure

Refer to RPIP data structure for lines 1 - 4

FIELD_NAME	UNITS ·	RANGE	TYPE	WIDTH	END
Line 5: repeated for	each cha	annel measur	ed.		
Channel Number	#	1 - 8	Integer	2	2
Skip Flag	-	sp,x,-,b	Character	1	3
Channel Type		ex:"Ex"	Character	3	б
N-Spacing	#	0 - 99.9	Scaled	5	11
undefined	-		spaces	2	13
Fourier Magnitude	v		Scaled w/exp		21
3-Point DC Phase	mr	±6283.2	Scaled	7	29
Resistivity	Ω m		Scaled w/exp	7	37
Gains/Attenuator	###A	ex:"0000"	Character -	4	42
SEM	mr		Scaled	6	49
Self Potential	mv		Scaled	7	57
Contact Resistance	Ω		Scaled w/exp	6	64
External Amp Gain	#	1 - 9	Integer	1	66
Harmonic Data Lines:					
Channel Number	#	1 - 8	Integer	2	2
Magnitude 1	v		Scaled w/exp	8	10
Phase 1	mr	±6283.2	Float	7	18
Magnitude 3	v		Scaled w/exp	8	27
Phase 3	mr	±6283.2	Float	7	35
Magnitude 5	v		Scaled w/exp		44
Phase 5	mr	±6283.2	Float	7	52
Magnitude 7	v		Scaled w/exp		61
Phase 7	mr	±6283.2	Float	7	69
Magnitude 9	v		Scaled w/exp	8	78
Phase 9	mr	±6283.2	Float	7	86

NOTE: CR phase data are negated up to CR_0520, to follow the first quadrant plotting convention. SHRED automatically negates harmonic phase data for consistency with data processing programs. Use the command line switch /P to override the default mode.

Sample GDP TDIP DATA BLOCK

0072	0072								
TDIP0530	92-09-2	2 14:55	:34 13	.7v D-D					
Tx	1 Rx	3	N OUT	ESys 1	.000				
.500 Hz	1 C	yc Tx Cu	ırr	1					
1 ON	1 -1.	4992u	210.2	-2.826m	0260	0.00	-0.28	0	0
2 ON	2 -1.	3321u	-42.6	-10.04m	0260	0.00	0.00	0	0
3 ON	3 -3.	1433u	5.8	-59.25m	0260	0.00	0.00	0	0
Windows									
1	2	3	4	5		б	7	8	
1	-1	982595							
3199	-5614	-1252							
5457	317	5474							
-5833	-5084	-649							
6115	-1588	788							
4234	-4554	1763							
14678	5084	-4036							
6680	-8474	-3340							
5645	-4660	2319							
5080	423	-3340							
3010	1906	2134							
4610	-423	-3572							
11667	-3283	-5428							

TDIP input data file structure

Refer to RPIP data structure for of lines 1 - 4

FIELD_NAME	UNITS -	- RANGE	TYPE	WIDTH	END -	
Line 5: repeated for e	each cha	nnel measur	ed.			
Channel Number	#	1 - 8	Integer	2	2	
Skip Flag	-	sp,x,-,b	Character	1	3	
Channel Type	-	ex:"ON"	Character	3	6	
N-Spacing	#	0 - 99.9	Scaled	5	11	
undefined	-		spaces	2	13	
Primary Voltage	v		Scaled w/exp	8	21	
Chargeability	ms	±9999.9	Scaled	7	29	
Resistivity	Ω m		Scaled w/exp	7	37	
Gains/Attenuator	###A	ex:"0260"	Character	4	42	
SEM	ms		Scaled w/exp	б	49	
Self Potential	mv		Scaled	7	57	
Contact Resistance	Ω		Scaled w/exp	6	64	
External Amp Gain	#	1 - 9	Integer	1	66	

TDIP input data file window structure follows two header lines.

1 m 15 lows of the	autu uit	and builde.			
Channel 1	10*mV/V	Integer	7	7	
Channel 2	10*mV/V	Integer	7	15	
Channel 3	10*mV/V	Integer	7	23	
Channel 4	10*mV/V	Integer	7	31	
Channel 5	10*mV/V	Integer	7	39	
Channel 6	10*mV/V	Integer	7	47	
Channel 7	10*mV/V	Integer	7	55	
Channel 8	10*mV/V	Integer	7	63	

NOTE: Extremely large values will shift data in the columns that follow.

Sample GDP TEM DATA BLOCK

0078								
TEM 0530	93-07-16	15:02:03	13.6v IN	L				
Tx	1 Rx	3 N	OUT ESy:	s 1.000				
1 Hz	32 Cy	c Tx Curr	1 72	9.6u 188u	u 486.4ı	1		
			45m 15.5			-0.28		
			45m 15.0'					
3 Hz	3 5.3	884u 30.	45m 14.04	4m 0600 1	.699u	0.00	0	0
Wn	Mag 1	Mag 2	Mag 3	Rho 1	Rho 2	Rho 3		
486.4u	22.134m	22.109m	22.105m	12.800m	12.810m	12.811m		
972.8u	17.657m	17.636m	17.639m	7.4854m	7.4914m	7.4904m		
1.459m	14.088m	14.073m	14.071m	5.3568m	5.3606m	5.3610m		
1.946m	11.239m	11.228m	11.230m	4.2787m	4.2818m	4.2813m		
2.432m	8.9677m	8.9598m	8.9658m	3.6622m	3.6644m	3.6628m		
3.152m	7.1598m	7.1498m	7.1509m	3.2859m	3.2890m	3.2886m		
4.127m	5.1350m	5.1284m	5.1287m	2.9735m	2.9761m	2.9760m		

Line 5 is repeated for each channel measured.

Line 7 is repeated for each window measured (only 7 are shown here).

TEM input data file structure

Refer to RPIP data structure for lines 1 - 3

FIELD_NAME	UNITS	RANGE	TYPE	WIDTH	END
Line 4					
Frequency		ex:" 1"	Scaled	4	4
Cyc value	#	1 - 16384	Integer	5	14
Tx Current	amps	0 - 99999	Scaled	6	33
Sampling Delay	S		Scaled w/exp	7	39
Alias Filter Delay	S		Scaled w/exp	5	44
Sampling Interval	S		Scaled w/exp	7	53
Line 5: repeated for					
Channel Number	#	1 - 8	Integer	1	2
Skip Flag	-	sp,x,-,b	Character		3
Channel Type	-	ex:"Hz"	Character	3	6
Station Number	#	±0 - 99999	Scaled	б	12
Magnitude @ RefW	in v/a		Scaled w/exp	8	21
Reference Window T	ime s		Scaled w/exp	7	29
Resistivity @ RefW	in Ω m		Scaled w/exp	7	37
Gains/Attenuator	###A	ex:"0600"	Character	4	42
SEM	v/a		Scaled w/exp	6	49
Self Potential	mv		Scaled	7	57
Contact Resistance	Ω		Scaled w/exp	6	64
External Amp Gain	#	1 - 9	Integer	1	66

The magnitude and resistivity table will have up to 31 lines of data. A column of Time is followed by a column of Magnitude (and Resistivity for particular loop types and components) for each channel.

The structure for the three types of columns are:

The structure for the th		, al ci		
Time	S	Scaled w/exp	7	
Magnitude	v/a	Scaled w/exp	8	
Resistivity	Ω m	Scaled w/exp	8	

011	17									
CSZ	AM0530) 92-10	0-21 16:2	29:15 12.	lv AMT					
Тx	Tx 1 Rx 850 N 60, 5									
102	1024 Hz 16384 Cyc Tx Curr 28.0									
1	Ex	600	495.99u	-206.8	244.9	0160	0.76	-22.71	7.62K O	
2	Ex	700	353.53u	-322.9	124.4	0260	0.93	45.39	9.04K 0	
3	Ex	800	531.99u	-311.0	281.7	0360	0.55	29.21	5.10K O	
4	Ex	900	638.55u	-341.4	405.9	0360	0.51	-36.76	3.59K O	
5	Ex	1000	573.13u	-333.2	327.0	0260	0.49	-19.34	3.45K O	
6	Ex	1100	940.29u	-325.9	880.2	0160	0.40	-17.93	3.17K O	
7	Hy	590	14.522u	-1259.9	933.9	0260	0.54	-7.03	441 0	

CSAMT input data file structure

Refer to RPIP data structure for structure of lines 1 - 4

FIELD_NAME	UNITS	RANGE	TYPE	WIDTH	END
Line 5, E-field channe	els				
Channel Number	#	1 - 8	Integer	2	2
Skip Flag	-	sp,x,-,b	Character	1	3
Channel Type	-	ex:"Ex"	Character	3	б
Station Number	#	±0 - 99999	Scaled	6	12
Magnitude	v		Scaled w/exp	8	21
Phase	mr	±6283.2	Scaled	7	29
Resistivity	Ω m		Scaled w/exp	7	37
Gains/Attenuator	###A	ex:"0160"	Character	4	42
SEM	mr		Scaled	б	49
Self Potential	mv		Scaled	7	57
Contact Resistance	Ω		Scaled w/exp	6	64
External Amp Gain	#	1 - 9	Integer	1	66
	_				
Line 5, H-field channe				-	
Channel Number		1 - 8	Integer	2	2
Skip Flag	-	i≂⊥ / / / / -=	Character	1	3
Channel Type	-	ex:"Hy"	Character	3	6
undefined	#		spaces	3	9
Antenna/Channel	#	0 - 9999	Integer	4	13
2	µTesl		Scaled w/exp		21
Phase	mr		Scaled	7	29
Phase Difference			Float	7	37
Gains/Attenuator	###A	ex:"0260"	Character	4	42
SEM	mr		Scaled	6	49
Self Potential	mv		Scaled	7	57
Contact Resistance	Ω		Scaled w/exp	6	64
External Amp Gain	#	1 - 9	Integer	1	66

Sample GDP CSHA DATA BLOCK

01	17
CS	HA0530 92-10-21 16:29:15 12.1v AMT
Τx	1 Rx 850 N 60, 5
10	24 Hz 16384 Cyc Tx Curr 28.0
1	Ex 600 495.99u -206.8 244.9 0160 0.76 -22.71 7.62K 0
2	Ex 700 353.53u -322.9 124.4 0260 0.93 45.39 9.04K 0
3	Ex 800 531.99u -311.0 281.7 0360 0.55 29.21 5.10K 0
4	Ex 900 638.55u -341.4 405.9 0360 0.51 -36.76 3.59K 0
5	Ex 1000 573.13u -333.2 327.0 0260 0.49 -19.34 3.45K 0
6	Ex 1100 940.29u -325.9 880.2 0160 0.40 -17.93 3.17K 0
7	Hy 590 14.522u -1259.9 933.9 0260 0.54 -7.03 441 0
	Rho 1 Rho 3 Rho 5 Rho 7 Rho 9 PD 1 PD 3 PD 5
1	244.9 392.8 490.9 714.6 617.3 1053.1 1130.0 1142.6
2	124.4 170.2 177.4 207.5 144.4 936.9 836.4 717.7
3	281.7 385.2 414.8 528.2 600.6 948.8 912.6 851.3
4	405.9 533.0 556.1 691.9 750.5 918.5 853.5 765.6
5	327.0 432.3 431.1 488.2 506.1 926.6 876.4 804.6
6	880.2 1.169K 1.177K 1.383K 1.451K 933.9 906.5 855.3
Ha	rmonics 1 3 5 7
1	495.99u -206.8 361.06u -546.7 302.26u -634.5 286.64u
2	353.53u -322.9 237.68u -840.2 181.68u -1059.3 154.47u
3	531.99u -311.0 357.55u -764.1 277.83u -925.8 246.45u
4	638.55u -341.4 420.60u -823.2 321.71u -1011.5 282.06u
5	573.13u -333.2 378.80u -800.3 283.26u -972.5 236.92u
6	940.29u -325.9 623.01u -770.2 468.07u -921.7 398.74u
7	14.522u -1259.9 4.8197u -1676.7 2.7955u -1777.1 1.8571u

NOTE: Harmonic Impedance Phase Data are shown through the 5th harmonic value. Harmonic Magnitude and Phase data are shown through the 7th harmonic magnitude.

CSHA input data file structure

Refer to RPIP for structure of lines 1 - 4.

Refer to CSAMT for structure of line 5 (channel measurements)

Structure of Resistivity and Impedance Phase lines. There will be one line for each E-field component.

FIE	LD_NAME		UNITS	 RANGE		TYPE -		WIDTH	 END	
Cha	innel Numbe	er	#	1 - 8		Intege	r	1	1	
Res	sistivity 1	L	Ω m			Scaled	w/exp	6	9	
Res	sistivity 3	3	Ω m			Scaled	w/exp	6	16	
Res	sistivity 5	5	Ω m			Scaled	w/exp	6	23	
Res	sistivity 7	7	Ω m			Scaled	w/exp	6	30	
Res	sistivity 9)	Ω m			Scaled	w/exp	6	37	
Imp	edance Pha	ase 1	mr	±6283.	2	Float		7	45	
Imp	edance Pha	ase 3	mr	±6283.	2	Float		7	53	
Imp	edance Pha	ase 5	mr	±6283.	2	Float		7	61	
Imp	edance Pha	ase 7	mr	±6283.	2	Float		7	69	
Imp	edance Pha	ase 9	mr	±6283.	2	Float		7	77	

Refer to CR for structure of lines below the "Harmonics" label.

Sample GDP AMT DATA BLOCK

0487						
AMT 0530 93-0	04-21 13:	:43:22 1	12.3v VEC			
Tx 1 F	۲x	9 N 60), 5			
128 Hz	1 Bursts	s 9 Sta	acks 256	Samples	2 1	
1 Ex 9	27.777m	n 0.85	52 19.50	2260	9 7.63	943 0
1			.2 26.83			55.0K O
3 Ey 9	7.3566m	n 0.92	25 21.82	0560	8 -12.41	829 0
4 Hx 95	5 133.871	ı 877.	.8 25.51	0160	8 -16.77	54.9K O
freq ExMag				xyPhz	-	
128 510.99u				885.9	0.646	
256 995.88u				829.5	0.863	
384 5.0054m				494.2	0.861	
512 8.5127m				879.4	0.885	
640 27.777m			26.83	584.2	0.852	
768 29.257m				387.2	0.780	
896 61.030m			76.89	196.4	0.787	
freq EyMag	5	-	-		yxCC	
128 121.86u				293.6	0.652	
256 312.08u				487.0	0.843	
384 2.1014m			36.99	653.1	0.934	
512 2.4406m			62.10	591.2	0.903	
640 7.3566m			25.51	877.8	0.925	
768 10.386m			40.21	678.7	0.934	
896 13.585m	178.19u	24.21	43.46	771.3	0.746	

AMT input data file structure

Refer to RPIP for structure of lines 1 - 3.

FIELD_NAME UNITS		RANGE TY	PE WIDTH	EN	ID
Line 4					
Frequency	Hz	ex:" 1"	Scaled	4	4
Burst Count	#	0 - 50	Integer	3	14
Stack Count	#	0 - 16384	Integer	5	24
Sample Count	#	0 - 1024	Integer	4	36
Good Ex Count	#	0 - 16384	Integer	6	51
Good Ey Count	#	0 - 16384	Integer	6	58
FIELD_NAME UNITS Line 5, Ex channels		RANGE TY	PE WIDTH	EN	ID
Channel Number	#	1 - 8	Integer	2	2
Skip Flag	-	sp,x,-,b	Character	1	3
Channel Type	-	ex:"Ex"	Character	3	6
Station Number	#	±0 - 99999	Scaled	б	12
Magnitude √autopower	v		Scaled w/exp	8	21
Correlation	#	0 - 0.999	Float	7	29
5h RhoA ExHy*/HyHy*	Ωm		Scaled w/exp	7	37
Gains/Attenuator #	##A	ex:"0160"	Character	4	42
Good Burst Count	#	0 - 16384	Integer	5	49
Self Potential	mv		Scaled	7	57
Contact Resistance	Ω		Scaled w/exp	6	64
External Amp Gain	#	0 - 7	Integer	1	66

Line 5, Hy channels					
Channel Number	#	1 - 8	Integer	2	2
Skip Flag	-	sp,x,-,b	Character	1	3
Channel Type	-	ex:"Hy"	Character	3	6
undefined	#		spaces	3	9
Antenna/Channel	#	0 - 9999	Integer	4	13
Magnitude √autopower	r µTesl	La	Scaled w/exp	8	21
Phase	mr	±6283.2	Scaled	7	29
5h RhoA ExHy*/HyHy*	Ω m		Scaled w/exp	7	37
Gains/Attenuator	###A	ex:"0260"	Character	4	42
Good Burst Count	#	0 - 16384	Integer	5	49
Self Potential	mv		Scaled	7	57
Contact Resistance	Ω		Scaled w/exp	6	64
External Amp Gain	#	0 - 7	Integer	1	66

AMT input data file structure (cont'd)

Structure of Magnitude, Resistivity, Impedance Phase and Tipper lines. For each harmonic frequency there is one line for sections ExHy & Hz and EyHx & Hz. Data are provided for harmonics 1, 2, 3, 4, 5, 6, 7.

The measurement sequence may result in multiple magnitudes for each H-field component. There may be different values for HyMag, one measured with the ExMag, and a second measured with HzMag.

FIELD_NAME UNI	TS R	ANGE TY	YPE WIDTH	H H	END
Frequency	Hz	ex:" 1"	Scaled	4	4
Ex or EyMagnitude	v		Scaled w/exp	7	12
Hy or HxMagnitude	µTesla		Scaled w/exp	7	20
xy or yxRhol	Ω m		Scaled w/exp	6	27
xy or yxRho2	Ω m		Scaled w/exp	6	34
xy or yxPhase	mr	±6283.2	Scaled	7	42
xy or yxCorrelation	#	0 - 0.999	Float	7	50
HzMagnitude	µTesla		Scaled w/exp	7	58
Hy or HzMagnitude	µTesla		Scaled w/exp	7	66
zy or zxTipper	#		Scaled w/exp	7	73
zy or zxPhase	mr	±6283.2	Scaled	7	81

Appendix B ... SHRED Data Record Structures

HEADER RECORD structure

FIELD_NAME UNI	TS	RANGE TY	(PE W)	IDTH E	ND
Record Type	-	H , D	Character	1	1
Skip/Average Flag	#	0 , 1	Integer	1	3
Block Number	#	0 - 9999	Integer	4	8
Header Label	#	0 - 999	Integer	3	12
Sequence Number	#	0 - 9	Integer	1	14
Survey Type, Versio	n –		Character	8	23
Date	date	dd mmm yy	Date	8	32
Time	time	hh:mm:ss	Time	8	41
Voltage	v	0 - 99.9	Scaled	4	46
Array Type	-	ex:"D-D"	Character	3	50
Operator	-	ex:"JOHN"	Character	4	60
Tx Identification	-	ex:"ONE"	Character	4	65
A-Spacing	m	positive	Scaled	б	72
Job Number	-	ex:"GOLD"	Character	5	78
Line Number	-	ex:"1+00"	Character	8	87
Line Direction	-	ex:"NE"	Character	2	90
Spread	-	ex:"A"	Character	2	93

One of the following sections may be included after the end of the normal Header:

TDIP, RPIP, CR header addition

Tx Shunt	(CR or RPIP) Ω	positive	Scaled w/exp	9	103
Ax	(Sch or Grd) m	±0-9999999	Scaled	8	112
Bx	(Sch or Grd) m	±0-9999999	Scaled	8	121

TEM header addition

Duty Cycle	0/0	50 or 100%	Character	3	97
Receiver Moment	m ²	1 - 999999	Integer	6	104
Tx Length, X	m	1 - 9999	Integer	4	109
Tx Length, Y	m	1 - 9999	Integer	4	114
Tx Loop Turns	#	1 - 99	Integer	2	117
Tx Turnoff Delay	s	1 - 9999	Scaled w/exp	7	125
Rx Antenna Delay	s	1 - 9999	Scaled w/exp	7	133
Coil Reference Factor	#	.001 - 9.999	Float	5	143

AMT header addition

Correlation Limit	#	0 - 0.999	Float	5	99
FFT Function	-	ex:"HANN"	Character	4	104

RPIP RECORD structure

FIELD_NAME U	JNITS	RANGE	TYPE WID	TH	END
Record Type	-	H , D	Character	1	1
Skip/Average Flag	r #	0 , 1	Integer	1	3
Block Number	#	0 - 9999	Integer	4	8
Header Label	#	0 - 999	Integer	3	12
Sequence Number	#	0 - 9	Integer	1	14
Date	date	dd mmm y	y Character	8	23
Time	time	hh:mm:ss	Character	8	32
Voltage	v	0 - 99.9	Scaled	4	37
Frequency	Hz	ex:"8192	" Scaled	5	43
Cycles	#	1 - 1638	4 Integer	5	49
Tx Current	amps	0 - 9999	9 Scaled w/exp	8	58
Tx	#	±0-999999	9 Integer	8	67
Rx Calculated	#	pos or ne	g Scaled w/exp	11	79

Secondary structure

5					
Channel Type	-	"ON","Ref"	Character	3	83
Polarity Flip Flag	#	0 , 1	Integer	1	85
N-Spacing	#	0 - 99.9	Scaled	8	94
Magnitude	v		Scaled w/exp	10	105
Phase	mr	±6283.2	Scaled w/exp	10	116
Resistivity	Ω m		Scaled w/exp	10	127
Gains/Attenuator	###A	ex:"0000"	Character	4	132
SEM	mr		Scaled	7	140
Self Potential	mv		Scaled	7	151
Contact Resistance	Ω		Scaled w/exp	9	161
External Amp Gain	#	1-999999	Integer	6	167

Reference channel magnitude (only when Reference channel in use)

Reference MagnitudevScaled w/exp10178					
	Reference Magnitude	v	Scaled w/exp	10	178

CR RECORD structure

FIELD_NAME UNI	ITS	RANGE TY	PE WIDT	H	END
Record Type	-	H , D	Character	1	1
Skip/Average Flag	#	0 , 1	Integer	1	3
Block Number	#	0 - 9999	Integer	4	8
Header Label	#	0 - 999	Integer	3	12
Sequence Number	#	0 - 9	Integer	1	14
Date	date	dd mmm yy	Character	8	23
Time	time	hh:mm:ss	Character	8	32
Voltage	v	0 - 99.9	Scaled	4	37
Frequency	Hz	ex:" 8"	Scaled	5	43
Cycles	#	1 - 16384	Integer	5	49
Tx Current	amps	0 - 99999	Scaled w/exp	8	58
Tx	#	±0-9999999	Integer	8	67
Rx Calculated	#	pos or neg	Scaled w/exp	11	79

Secondary structure

<u> </u>					
Channel Type	-	ex:"Ex"	Character	3	83
Polarity Flip Flag	#	0 - 1	Integer	1	85
N-Spacing	#	0 - 99.9	Scaled	8	94
Magnitude	v		Scaled w/exp	10	105
3-Point DC Phase	mr	±6283.2	Scaled w/exp	10	116
Resistivity	Ω m		Scaled w/exp	10	127
Gains/Attenuator	###A	ex:"0260"	Character	4	132
SEM	mr		Scaled	7	140
Self Potential	mv		Scaled	7	151
Contact Resistance	Ω		Scaled w/exp	9	161
External Amp Gain	#	1-999999	Integer	6	167

Harmonic data structure

Magnitude 1	v		Scaled w/exp	10	178
Phase 1	mr	±6283.2	Float	7	186
Magnitude 3	v		Scaled w/exp	10	197
Phase 3	mr	±6283.2	Float	7	205
Magnitude 5	v		Scaled w/exp	10	216
Phase 5	mr	±6283.2	Float	7	224
Magnitude 7	v		Scaled w/exp	10	235
Phase 7	mr	±6283.2	Float	7	243
Magnitude 9	v		Scaled w/exp	10	254
Phase 9	mr	±6283.2	Float	7	262

Reference channel magnitude (only when Reference channel in use)

Reference Magnitude	v	Scaled w/exp	10	273

Laboratory Rock value structure (Array Type: LAB)

······································				
Shunt Resistor	Ω	Scaled w/exp	9	283
Rock Sample Length	CM	Scaled w/exp	9	293
Rock Sample Area	cm^2	Scaled w/exp	9	303

TDIP RECORD structure

FIELD_NAME UN	IITS	RANGE TY	PE WIDT	CH H7	END
Record Type	-	H , D	Character	1	1
Skip/Average Flag	#	0 , 1	Integer	1	3
Block Number	#	0 - 9999	Integer	4	8
Header Label	#	0 - 999	Integer	3	12
Sequence Number	#	0 - 9	Integer	1	14
Date	date	dd mmm yy	Character	8	23
Time	time	hh:mm:ss	Character	8	32
Voltage	v	0 - 99.9	Scaled	4	37
Frequency	Hz	ex:" 16"	Scaled	5	43
Cycles	#	1 - 16384	Integer	5	49
Tx Current	amps	0 - 99999	Scaled w/exp	8	58
Tx	#	±0-9999999	Integer	8	67
Rx Calculated	#	pos or neg	Scaled w/exp	11	79

Secondary structure

Channel Type	-	ex:"On"	Character	3	83
Polarity Flip Flag	#	0 , 1	Integer	1	85
N-Spacing	#	0 - 99.9	Scaled	8	94
Primary Voltage	v		Scaled w/exp	10	105
Chargeability	ms	±9999.9	Scaled w/exp	10	116
Resistivity	Ω m		Scaled w/exp	10	127
Gains/Attenuator	###A	ex:"0260"	Character	4	132
SEM	ms		Scaled	7	140
Self Potential	mv		Scaled	7	151
Contact Resistance	Ω		Scaled w/exp	9	161
External Amp Gain	#	1-999999	Integer	6	167

Window Value 10*mV/V ±0-9999999 Integer 7 +8		,	/			
			±0-999999	in eaer	7	+8

TEM RECORD structure

FIELD_NAME UN	ITS	RANGE TY	PE WIDT	CH	END
Record Type	-	H , D	Character	1	1
Skip/Average Flag	#	0 , 1	Integer	1	3
Block Number	#	0 - 9999	Integer	4	8
Header Label	#	0 - 999	Integer	3	12
Sequence Number	#	0 - 9	Integer	1	14
Date	date	dd mmm yy	Character	8	23
Time	time	hh:mm:ss	Character	8	32
Voltage	v	0 - 99.9	Scaled	4	37
Frequency	Hz	ex:" 1"	Scaled	5	43
Cycles	#	1 - 16384	Integer	5	49
Tx Current	amps	0 - 99999	Scaled w/exp	8	58
Tx	#	±0-9999999	Integer	8	67
Rx Calculated	#	pos or neg	Scaled w/exp	11	79

Secondary structure

Channel Type	-	ex:"Hz"	Character	3	83
Polarity Flip Flag	#	0 , 1	Integer	1	85
Station Number	#	0 - 99.9	Integer	8	94
Magnitude	v/a		Scaled w/exp	10	105
Window Number	#		Integer	10	116
Resistivity	Ω m		Scaled w/exp	10	127
Gains/Attenuator	###A	ex:"0260"	Character	4	132
SEM	v/a		Scaled w/exp	10	143
Self Potential	mv		Scaled	7	151
Contact Resistance	Ω		Scaled w/exp	9	161
External Amp Gain	#	1-999999	Integer	6	167

TEM Data structure

Sampling Delay	S		Scaled w/exp	9	177
Alias Delay	S		Scaled w/exp	7	185
Window 1 TIme	S		Scaled w/exp	9	195
Sampling Interval	S		Scaled w/exp	10	206
Mag/Rho Label	-	"Tm", "Tr"	Character	2	209

TEM Mag / Rho structure (22, 25, 28, 31 or 32 values, max 561 columns)

Window Value	v/a or Ω m	Scaled w/exp 10	+11
		, <u> </u>	

CSAMT RECORD structure

FIELD_NAME UNI	LTS	RANGE TY	PE WIDT	'Η	END
Record Type	-	H , D	Character	1	1
Skip/Average Flag	#	0 , 1	Integer	1	3
Block Number	#	0 - 9999	Integer	4	8
Header Label	#	0 - 999	Integer	3	12
Sequence Number	#	0 - 9	Integer	1	14
Date	date	dd mmm yy	Character	8	23
Time	time	hh:mm:ss	Character	8	32
Voltage	v	0 - 99.9	Scaled	4	37
Frequency	Hz	ex:"1024"	Scaled	5	43
Cycles	#	1 - 16384	Integer	5	49
Tx Current	amps	0 - 99999	Scaled w/exp	8	58
Tx	#	±0-9999999	Integer	8	67
Rx Calculated	#	pos or neg	Scaled w/exp	11	79

E-field structure

Channel Type	-	Ex,Ey,E-	Character	3	83
Polarity Flip Flag	#	0,1	Integer	1	85
Station #	#	±0 - 99999	Scaled	8	94
Magnitude	v		Scaled w/exp	10	105
Phase	mr	±6283.2	Scaled w/exp	10	116
Resistivity	Ω m		Scaled w/exp	10	127
Gains/Attenuator	###A	ex:"0260"	Character	4	132
SEM	mr		Scaled	7	140
Self Potential	mv		Scaled	7	151
Contact Resistance	Ω		Scaled w/exp	9	161
External Amp Gain	#	1-999999	Integer	6	167

H-field structure

Channel Type	-	Hx,Hy,Hz,H-	Character	3	171
Polarity Flip Flag	#	0 , 1	Integer	1	173
Antenna/Channel	#	0 - 9999	Integer	4	182
Magnitude	µTesla	a	Scaled w/exp	10	193
Phase	mr	±6283.2	Scaled w/exp	10	204
Phase Difference	mr	±6283.2	Float	10	215
Gains/Attenuator	###A	ex:"0260"	Character	4	220
SEM	mr		Scaled	7	228
Self Potential	mv		Scaled	7	239
Contact Resistance	Ω		Scaled w/exp	9	249
External Amp Gain	#	1-999999	Integer	6	255

CSHA RECORD structure

CSHA data structure is identical to the CSAMT data structure. The data are separated by frequency, and written using the same format.

AMT RECORD structure

FIELD_NAME	UNITS	RANGE TY	YPE WIDT	'H	END
Record Type	-	H , D	Character	1	1
Skip/Average Fl	ag #	0 , 1	Integer	1	3
Block Number	#	0 - 9999	Integer	4	8
Header Label	#	0 - 999	Integer	3	12
Sequence Number	#	0 - 9	Integer	1	14
Date	date	dd mmm yy	Character	8	23
Time	time	hh:mm:ss	Character	8	32
Voltage	v	0 - 99.9	Scaled	4	37
Frequency	Hz	ex:"1024"	Scaled	5	43
Burst count	#	1 - 15	Integer	5	49
Tx Current	constant	0.00	Character	8	58
Tx	#	±0-9999999	Integer	8	67
Rx Calculated	#	pos or neg	Scaled w/exp	11	79

Ex,Ey,(E-) channel structure

Channel Type	-	Ex,Ey,E-	Character	3	83
Polarity Flip Flag	#	0 , 1	Integer	1	85
Station #	#	±0 - 99999	Scaled	8	94
E- Magnitude	v		Scaled w/exp	10	105
Correlation Coeff.	#	0 - 0.999	Float	10	116
Resistivity 1	Ω m		Scaled w/exp	10	127
Gains/Attenuator	###A	ex:"0260"	Character	4	132
Good Burst Count	#	0 - 16384	Integer	7	140
Self Potential	mv		Scaled	7	151
Contact Resistance	Ω		Scaled w/exp	9	161
External Amp Gain	#	1-999999	Integer	6	167

Hx,Hy,(Hz) channel structure

, , , , , , , , , , , , , , , , , , , ,					
Channel Type	_	Hx,Hy,Hz,H-	Character	3	171
Polarity Flip Flag	#	0 , 1	Integer	1	173
Antenna/Channel	#	0 - 9999	Integer	4	182
zy Hz Magnitude	µTesla	a	Scaled w/exp	10	193
Phase	mr	±6283.2	Scaled w/exp	10	204
Resistivity 2	Ω m		Scaled w/exp	10	215
Gains/Attenuator	###A	ex:"0260"	Character	4	220
Good Burst Count	#	0 - 15	Integer	7	228
Self Potential	mv		Scaled	7	239
Contact Resistance	Ω		Scaled w/exp	9	249
External Amp Gain	#	1-999999	Integer	6	255

Additional parameters

Stack Count	#	0 - 50	Integer	3	259
Samples per Burst	#	0 - 1024	Integer	4	264
zx Hz Magnitude	µTesla		Scaled w/exp	10	275

E-,Hz channel structure Same as above except as noted here.

Default Magnitude	v	0	Scaled w/exp	10	105
zx Phase Difference	mr	±6283.2	Scaled w/exp	10	116
zx ratio, Tipper	#		Scaled w/exp	10	127
Default Stack Count	#	0	Integer	7	140
Default Self Potentia	1 #	0	Scaled	7	151
Default Contact Res.	#	0	Scaled w/exp	9	161
External Amp Gain	#	1-999999	Integer	6	167
zy Phase Difference	mr	±6283.2	Scaled w/exp	10	204
zy ratio, Tipper	#		Scaled w/exp	10	215
Default Stack Count	#	0	Integer	7	228

Appendix C ... GDP Calibrate Data Structures

Measured data are decalibrated by:

- 1. divide by calibrate magnitude values, and
- 2. subtract calibrate phase values (no phase values for Time Domain)

NON-HARMONIC CALIBRATE STRUCTURES

Frequency labels defined:

Treque	Jile y Tab	cis ucin	licu.								
.001	.002	.004	.008	.016	.031	.063	.125	.250	.500	1	2
4	8	16	32	64	128	256	512	1024	2048	4096	8192

	L structure: TDIP system		CAL struct IP, CSAMT			ANTCAL structure: CSAMT coil			
CAL	8192	CAL	8192		ANTENN	IA 8192			
1	1.00000	1	.14427	975.7	010	138.15000	-796.2		
2	1.00000	2	.14102	975.6	020	137.45000	-511.8		
3	1.00000	3	.13454	948.8	030	142.61000	-752.1		
4	1.00000	4	.13433	978.4	250	107.86000	-665.3		
5	1.00000	5	.13730	972.0	151	19.95000	-1729.5		
6	1.00000	6	.14443	996.3	152	20.44200	-1703.2		
7	1.00000	7	.13780	948.9	161	23.34900	-1716.9		
8	1.00000	8	.14244	980.2	490	111.02000	-555.2		
9	1.00000	9	1.00000	0.0	0	1.00000	0.0		
10	1.00000	10	1.00000	0.0	0	1.00000	0.0		
11	1.00000	11	1.00000	0.0	0	1.00000	0.0		
12	1.00000	12	1.00000	0.0	0	1.00000	0.0		
13	1.00000	13	1.00000	0.0	0	1.00000	0.0		
14	1.00000	14	1.00000	0.0	0	1.00000	0.0		
15	1.00000	15	1.00000	0.0	0	1.00000	0.0		
16	1.00000	16	1.00000	0.0	0	1.00000	0.0		

- TDCAL : channel number and magnitude data (no phase data)
- FDCAL : channel number, magnitude and phase data.
- ANTCAL: coil number and channel, magnitude and phase data.

Calibrate values are not restricted to specific columns, but must be separated by one or more spaces.

HARMONIC CALIBRATE STRUCTURES

Frequency labels defined:

 1											
				.016	.031	.063	.125	.250	.500	1	2
4	8	16	32	64	128	256	512	1024	2048		

CRCAL structure: (CR, CSHA system calibrate)

-							
CR	2048						
1	.94340	1780.2	.21253	2890.0	.04791	-2474.1	
2	.93949	1796.2	.20745	2910.0	.04643	-2465.7	
3	.94000	1806.5	.20583	2932.8	.04550	-2435.3	
4	.93655	1806.3	.20225	2933.5	.04443	-2451.8	
5	.93688	1798.3	.20614	2917.1	.04571	-2458.4	
6	.93948	1791.3	.20889	2894.8	.04685	-2487.9	
7	.93862	1806.2	.20504	2933.5	.04552	-2438.6	
8	.93796	1796.0	.20579	2912.9	.04596	-2469.8	
9	1.00000	0.0	1.00000	0.0	1.00000	0.0	
10	1.00000	0.0	1.00000	0.0	1.00000	0.0	
11	1.00000	0.0	1.00000	0.0	1.00000	0.0	
12	1.00000	0.0	1.00000	0.0	1.00000	0.0	
13	1.00000	0.0	1.00000	0.0	1.00000	0.0	
14	1.00000	0.0	1.00000	0.0	1.00000	0.0	
15	1.00000	0.0	1.00000	0.0	1.00000	0.0	
16	1.00000	0.0	1.00000	0.0	1.00000	0.0	

HACAL structure: (CR, CSHA H-field coil calibrate)

HA 204	18						
570	111.89372	168.2	116.60997	-85.3	112.94829	-231.2	
133	67.57783	1461.1	205.75810	1236.0	366.97522	958.2	
30	155.95605	288.2	164.83627	-116.6	155.72630	-331.3	
250	115.76102	154.2	118.69548	-127.7	112.69119	-291.6	
490	111.44049	171.8	116.44593	-74.1	113.46755	-213.8	
103	68.10265	1465.1	208.69449	1237.0	368.79691	947.6	
113	67.86490	1460.4	207.54478	1222.6	364.73868	926.4	
123	67.95684	1461.2	208.03650	1224.7	366.10318	928.5	
0	1.00000	0.0	1.00000	0.0	1.00000	0.0	
0	1.00000	0.0	1.00000	0.0	1.00000	0.0	
0	1.00000	0.0	1.00000	0.0	1.00000	0.0	
0	1.00000	0.0	1.00000	0.0	1.00000	0.0	
0	1.00000	0.0	1.00000	0.0	1.00000	0.0	
0	1.00000	0.0	1.00000	0.0	1.00000	0.0	
0	1.00000	0.0	1.00000	0.0	1.00000	0.0	
0	1.00000	0.0	1.00000	0.0	1.00000	0.0	

CRCAL: channel number, magnitude and phase data for five harmonics. HACAL: coil number and channel, mag and phase data for 5 harmonics.

The GDP-16 provides up to 8 channels, and 16 channels for the GDP-32.

Calibrate values are not restricted to specific columns, but must be separated by one or more spaces. In the above samples, the fifth and seventh magnitude and phase values are not included.

System calibrate magnitude values are unitless.

Coil calibrate magnitude values use units of milliVolts/nanoTesla.

Calibrate phase values use units of milliRadians.

Appendix D ... File Format Changes

GDP-16 .RAW-file, version 5.21

<u>Additions</u>

Header block inventory includes measured Gain Factors.

Ax location is an 8 char padded field (7 digits and sign) Bx location is an 8 char padded field (7 digits and sign) Ax and Bx appear in header block after SPREAD when Array Type is "Sch" or "Grd".

Changes

LINE increased from 6 to 8 chars.

Added a digit and allow negative sign (shifts SPREAD by 2 chars).

Header block inventory S/N increased from 3 to 4 digits.

When Array Type is "Grd", the "Tx" label is "Ry".

"Tx" and "Rx" are 8 char padded fields (7 digits and sign). (shifts "Rx" by 2 chars, shifts "N" by another 2 chars)

- "Tx Curr" format provides a floating decimal point, 0 to 3 digits. (no shift to any following fields, such as TEM delay times) (still restricted to positive values)
- "A-Spacing" format provides a floating decimal point, 0 to 4 digits. (no shift to any following fields, such as SHUNT) (still restricted to positive values)
- TDIP window magnitude format is an 8 char padded field (7 digits and sign). (increase of 3 characters)
- TDIP window magnitude format adds one char of precision: from milliunits to milliunits x10.

TEM may include up to 31 windows (increase from 28)

SHRED .FLD-file, version 2.60

Additions

Ax and Bx after Shunt in Header record.

Changes

Calculated Rx field increased from 10 to 12 characters. N-Spacing field increased from 7 to 8 characters. Scaling for TEM TxDelay and AntDelay changed from µs to seconds.

SHRED .FLD-file, version 2.8x

<u>Additions</u>

Natural Source AMT included. Provide for seven harmonics. Compare A-Spacing by value instead of by character string.

Include coherency limit for AMT data: \$ SHRED: CL= 0.400. Data that is below the limit will not be included in the .FLD-file.

<u>Changes</u>

TDIP setups now separate data by frequency, as for TEM. See the section "Sorting the data file".

For CR data with no E-fields (and no available station labels), use the coil number in the station field instead of a default (1.0) value.

Provide for variable decimal location for current (amps) value.

<u>To Come</u>

CSAMT H-field structure needs Phase Difference field expanded by three characters to provide for scaled value. The AMT structure uses the same format, and includes scaled values in this field.

Compatibility with GDP-16 and GDP-32 data formats. The Ch# (channel number) and TEM RxM (Rx Moment) fields will increase by one character.

SHRED .RAW-file, version 3.0x

Additions

Add one character to channel number field to provide for 16 channel GDP-32 data.

Expand TEM RxM (Receiver moment) value limit from 99999 to 999999.

SHRED .FLD-file, version 3.0x

Additions

Provide for GDP-16 and GDP-32 data formats up to version 0530.

Changes

Expand TEM RxM (Receiver moment) value limit from 999999 to 9999999.

To Come

Provide 16 channel calibrate buffers, presently limited to 8 channels. Calculate NSAMT calibrate data for even harmonics. Provide initial support for alphanumeric fields (operator and line).

Provide error message when recalculating station/n-spacing for a setup and the scale changes. (as when improperly adding a shallow channel)

GDP DATA PROCESSING MANUAL

GDP .RAW-file, AMT 0526

Additions

Add 2 character external preamp gain (exponent of two) after Contact Resistance.

02	39								
AM	AMT 0526 93-04-12 17:58:48 12.3v SCA								
Tx		1 Rx	3 N 60, 5						
	8 Hz	15 Bursts	1 Stack	256 \$	Samples	1	0		
1	Ex	1 8.6697u	0.954 2	1.81	2450	15	0.26	0	3
2	Ex	2 7.4002u	0.756 1	2.60	2440	15	0.26	0	3
3	Hy	24 2.1014u	718.4 1	8.69	0620	15	0.69	0	0

GDP .RAW-file, AMT 0530

Changes

Change OPER	from 4 digit integer	to 9 character alphanumeric value.			
Change LINE	from 9 digit scaled value	to 8 character alphanumeric value.			
Change SPREAD	from 2 digit integer	to 2 character alphanumeric value.			
Change TX-ID	from 4 digit integer	to 4 character alphanumeric value.			
Change JOB	from 5 digit integer	to 5 character alphanumeric value.			
Note: Gradient and Schlumberger arrays require numeric LINE value.					

Change the TEM Reference Window number to a Reference Window time. SHRED will not recognize the custom TDCS program type.

To Come

Add Rx and Ry channel types for remote reference applications. Change External Amp Gain to decimal instead of log base two. Multiple Ex and Ey components for vector applications. Add cascade decimation data acquisition. Will add a field, but not change formats.

SHRED .FLD-file, version 3.2x

<u>Additions</u>

Provide for GDP-16 and GDP-32 data formats including version 0530. Add sampling interval to TEM records, after Alias Filter Delay.

Add external amp gain, 5-digit integer following contact resistance, for all components. The GDP .RAW-file value is an exponent of two, the .FLD-file value is the actual value.

Changes

Increase OPER field from 4 to 9 characters. Exchange the AMT program fields for Stacks and Bursts.

For CR data with no E-fields (and no available station labels), use the Rx value instead of the coil number or a default (1.0) value.

For all component records, expand the phase value field by three characters to allow for scaled values.

The following default values are provided for older data file formats. Default values are zero for Sample Delay, Alias Filter Delay, Sample Period. Default values are one for Shunt, Rock Length, Rock Area.