CRRED
 DOCUMENTATION

ZONGE Data Processing CR and RPIP Data Processing Program
version 7.0x

Mykle Raymond
November, 1992
Zonge Engineering \& Research Organization, Inc.
3322 East Fort Lowell Road, Tucson, AZ 85716 USA

TABLE OF CONTENTS

CRRED page
CRRED Program Documentation. 5
Overview 5
Input Files 5
Output Files 5
Survey Location Conventions 5
Coupling Parameters 6
Residual Electromagnetic (REM) Data 6
CR Data Processing Flow 7
CRRED Usage 8
Mode Display 8
Error Messages 8
Output Selections 8
Sample Run 9
Appendix A ... MODE VARIABLES 11
MODE PROMPTS, Manual entry. 11
MODE Change Priorities 12
Local MODE Files 12
Global MODE Files 12
Data File MODE Statements 12
CRRED Mode List 13
Appendix B ... SAMPLE FILES 16
.LOG-file Program operation summary 16
.S-file CR /RPIP Averaged data file 17
.P-file Processed data file 19
.CL-file Data Listing file. 22
.Xnn-file Graphics Plot file 23
Appendix C ... FILE DOCUMENTATION 24
.S-file (CR /RPIP Averaged Data file) 24
.P-file CR / RPIP Processed Data file 26

CRRED Program Documentation

OVERVIEW

CRRED provides data listings, data files with choice of data curve, plots of Real vs Imaginary, and plots of Magnitude and Phase vs Frequency.

INPUT FILES

Data files read by CRRED include an averaged data file (.S-file) and optionally a mode file (.MDE-file).
The data file is provided from 1) the CRAVG CR data averaging program, 2) the RPAVG RPIP data averaging program, or 3) the GDPHM decoupling program. The data file includes the averaged data curve for a set of frequencies, and the GDPHM program can include coupling parameters.

An optional mode file includes entries that modify mode values defined by Zonge DATPRO programs. A mode name is specified for several program variables that a user may wish to modify. Each line in a mode file includes the program name, mode name, and value. When running CRRED, help text and mode descriptions are also available at the MODE prompt. This manual also includes a description for each variable that may be modified in CRRED, and includes an appendix that describes modes in more detail.

OUTPUT FILES

The CRRED listing file (.CL-file) provides a page of data on each data point, including raw data. Decoupled data is also included if the GDPHM program was used to provide coupling parameters.

The intermediate .P-file includes a data curve and several parameters for each data point. The data curve is usually the same averaged data curve included in the .S-file, but several coupling curves are available if the GDPHM program was used to include coupling parameters. This file is used by the PPLOT Spectral Pseudosection plot program, which creates a composite plot of data curves for all data points in pseudosection format. The LPLOT program uses the .P-file to create a plot .Z-file with the users choice of parameters or curve data. The ZPLOT plot program is then typically used to produce contoured pseudo-sections.

The averaged data are available in plots of Real vs Imaginary components. If the GDPHM program was used to provide coupling parameters, a second plot of the decoupled data is included.

The averaged data are available in plots of Magnitude and Phase vs Frequency. If the GDPHM program was used to provide coupling parameters, a second plot of the decoupled data is included.

The averaged data are also available in pairs of plots, one of Real vs Imaginary components and the other of Magnitude and Phase vs Frequency.

SURVEY LOCATION CONVENTIONS

Zonge DATPRO programs assume that survey locations for the Dipole-Dipole configuration are entered by the GDP operator in a specific manner. First, the N-Spacing for each channel is entered. Then, the Tx and Rx entries indicate the dipoles for the channel with the SMALLEST N-Spacing. Also, Dipoles extend between two adjacent stations with the LOWEST numbered station entered for each dipole.

Station numbers are assumed to increase towards the north or east, and decrease towards the south or west (negative values when the station is south or west of the zero coordinate). Therefore, the Tx and Rx entries reflect the south or west end of each dipole.

COUPLING PARAMETERS

Averaged data is composed of various responses, some of which are desirable. An IP response and multiple coupling responses are usually included, in addition to measurement noise. Coupling responses are due to the measurement configuration (such as Dipole-Dipole) and geologic structure in addition to various cultural responses from pipe lines, power lines, grounded metallic fences, railroads, and so on.

The GDPHM program is used to determine coupling responses. Theoretical data curves approximating each type of coupling are generated. The parameters for these curves are iteratively adjusted until the remaining data is minimized. The approximated curve then consists of one or more theoretical coupling curves and a theoretical IP response. Removing the coupling curves leaves you with the actual IP response and measurement noise.

A different, more direct, approach may be useful when the geologic structure is horizontally layered and relatively simple, and cultural responses are minimal. CRRED will remove the homogeneous earth response (one of the forms of coupling), which leaves the Residual EM (REM) response. This response is usually normalized by frequency and N -Spacing, and can provide a pseudosection that amplifies the response from resistively inconsistent geologic units.

RESIDUAL ELECTROMAGNETIC (REM) DATA

Data gathered for obtaining residual electromagnetic (REM) data are total impedance measurements of the coupling between grounded transmitter and receiver dipoles on the surface of the earth. When a constant squarewave of current flows through the transmitter wire and into the ground, this signal is coupled to the receiver by two methods acting simultaneously. The signal that appears at the receiver dipole is a combination of direct current coupling and inductive or electro-magnetic coupling. Direct current coupling, referred to as ground coupling or ground response, is due to actual current flow through the ground from the transmitter dipole to the receiver dipole. Electromagnetic coupling is induced signal in the receiver wire caused by the electromagnetic field around the transmitter dipole.

Both of these kinds of coupling are always present in total impedance data, but the degree to which each is present varies with different geologic environments. The form and quantity of the ground response are functions of the rock type and pore fluid content. Metallic sulfide minerals and layer silicate minerals are notable producers of large ground responses. Inductive coupling for a given frequency over a homogeneous earth is a function largely of resistivity and array geometry (dipole lengths and relative dipole position). For a given frequency over a layered or otherwise inhomogeneous earth it is a function of array geometry, resistivity, depth and size of the layers and/or bodies in the subsurface. In higher resistivity hard rock environments the ground response is usually nearer to and sometimes greater than the inductive coupling which is decreased with increased resistivity. Inversely, in lower resistivity sedimentary environments the ground response is usually small while inductive coupling dominates.

The method of obtaining REM data involves removing from the total impedance data two of the quantities known to present in all of the measurements, in order to allow effects from less prevalent sources to be more evident. First, direct current coupling or ground response is determined and removed from the total impedance data for the data station being analyzed. The standard ZERO decoupling technique can be used to find the total inductive coupling present, automatically eliminating the ground response. This is relatively slow except for simple geologic situations, but it yields noise-free coupling data. A faster method is to perform a quadratic fit on the three (typical) lowest frequencies measured, extrapolate to zero frequency, and use the resulting value as the "coupling free" ground response. Employing knowledge of the ground response in similar areas, an estimated ground response for all the frequencies is formulated and removed from the measured total impedance data. This method works well for sedimentary environments where ground responses are small and reasonably predictable.

Once the ground response has been removed, the remainder is the total electromagnetic coupling. The resistivity value is then used in the theoretical equation to compute the electromagnetic coupling that would be measured for a homogeneous earth. This theoretical response is then removed from the total electromagnetic coupling data to obtain residual electromagnetic data. As mentioned above, electromagnetic coupling due to array parameters is common for either a homogeneous or heterogeneous subsurface. Therefore, if homogeneous earth coupling parameters are computed for each data station and removed from the total measurement, coupling due to constant factors is eliminated. This technique is a theoretically derived method of amplifying the electromagnetic response due to resistively inconsistent geologic units.

CR DATA PROCESSING FLOW

April, 1992

Program names are CAPITALIZED File names are Boxed

Bold lines - show standard GDP data processing flow.

Other files read or written:
.MDE-file \quad.LOG-file \quad.Xnn-files

CRRED Usage

The GENERAL DATA PROCESSING DOCUMENTATION includes many details that are common to data processing programs.

Start the averaging program by typing "CRRED" <RETURN>. Respond to the prompt with the name of the .S-file. Command line execution also allows the user to type "CRRED" followed by the .S-filename <RETURN> to automatically load the data file.

Several variable parameters called "MODES" influence the operation of CRRED. A brief explanation of each mode, as well as its current value, can be listed within the program. An appendix to this manual summarizes the use of mode variables and includes a description of each mode defined by CRRED.

CRRED MODE DISPLAY

```
PROCESSING MODES USED:
\begin{tabular}{|c|c|c|c|c|c|}
\hline CONTROL MODES mode names mode values & \begin{tabular}{l}
AutoRun AUTO \\
YES
\end{tabular} & \begin{tabular}{l}
Choice \\
MENU \\
NONE
\end{tabular} & \begin{tabular}{l}
Screen \\
VIEW \\
NONE
\end{tabular} & \begin{tabular}{l}
HiFreq \\
FMAX \\
ALL
\end{tabular} & HarmLimit HARM NONE \\
\hline
\end{tabular}
```


CRRED ERROR MESSAGES

If errors or inconsistencies arise within the program, CRRED may type a "NOTE" or an "ERROR" message. A "NOTE" message usually indicates some irregularity in the data file that is not fatal to program operation. Depending on the severity of the problem, an "ERROR" message may allow the program to continue to run or cause it to interrupt and wait for a response to a prompt to continue, restart the program, or to end. These messages are also included in a .LOG-file, which provides documentation of the program operation, which is especially useful when running several programs automatically from a batch file.

CRRED OUTPUT SELECTIONS

CRRED will write listing (.CL-files), data (.P-files), and plot (.Xnn-files). A .LOG-file is automatically created by CRRED.

CRRED Sample Run

```
Input files: SAMCR.S, SAMCR.MDE
Output files: SAMCR.LOG, SAMCR.P, SAMCR.CL, SAMCR.Xnn
*** NOTE: responses to prompts are in bold type; comments regarding program
operation are enclosed in stars ***
C: > CRRED
ZONGE ENGINEERING: 3322 E. Fort Lowell, Tucson AZ 85716, USA
CRRED 7.01: CR DATA LIST, CURVE PLOT, PSEUDO-SECTION FILE
        MS-DOS version implemented 01 November, 1992.
CRRED VERSION UPDATE INFORMATION
1.40 Update for GDP-16 data.
7.00 Global Modes replace .I-file. Implement prioritized Modes.
Data filename [quit]: SAMCR *** Enter .S-file name ***
MODE COMPANY =Zonge Engineering
MODE AUTO = Yes
MODE CLIENT =ZONGE ENGINEERING
MODE PROJECT =Sample Data
MODE JOBNUMB =000
MODE JOBDATE =SEP 91
MODE JOBLINE =10
MODE BRGLINE =N 85 E
MODE BRGBACK =S 85 W
MODE STNLO = -3.0
MODE STNHI = 10.0
MODE FRQLO = 1/8 Hz
MODE FRQHI = 1/8 Hz
MODE AUTO = NO
(Type MENU for assistance with MODEs.)
MODE Change [name?, name= value] : LIST *** List current modes ***
PROCESSING MODE LIST: (Type MENU for assistance)
\(+==============+=========+=========+=========+=========+=========+\)
\begin{tabular}{|c|c|c|c|c|c|} 
CONTROL MODES & AutoRun & Choice & Screen & HiFreq & HarmLimit \\
mode names & AUTO & MENU & VIEW & FMAX & HARM \\
mode values & YES & NONE & NONE & ALL & NONE
\end{tabular}
\(+==============+=========+=========+=========+=========+========+\)
MODE Change [name?, name= value] : <CR> *** Press RETURN
```

CRRED Sample Run (continued)

```
MAIN MENU: OUTPUT OPTIONS Choose ONE of the following:
0: EXIT
    Return to filename prompt.
1: PLOT FILE: .P-file for LPLOT or PPLOT.
    Choice of data output provided by menu.
2: LISTING FILE: .L-file, one page per data point.
        Parameters and Raw Spectra data list are included.
        Decoupled points include Coupling and IP Response data.
3: SPECTRAL PLOTS: .Xnn-file(s), one per data point.
        Plot 1: scaled to Raw Spectra data.
        Plot 2: scaled to IP Response data (decoupled points only).
4: MAG & PHZ vs FREQ PLOTS: .Xnn-file(s), one per data point.
        Plot 1: scaled to Raw Spectra data.
        Plot 2: scaled to IP Response data (decoupled points only).
5: COMBINATION PLOTS: .Xnn-file(s), one per data point.
    Plot 1: Spectral Plot, scaled to Raw Spectra data.
    Plot 2: MAG & PHZ vs Freq Plot, scaled to Raw Spectra data.
```

Choice [exit]: 1 *** Select PLOT FILE

```
PLOT FILE OUTPUT OPTIONS =====
    0: Return to Main Menu 5: Raw Partial EM
    1: RP parameters ONLY 6: Normalized Partial EM
    2: RAW data (decalibrated) 7: Total EM
    3: IP response (and noise) 8: Raw Residual EM
    4: Hilbert IP response 9: Normalized Residual EM
    5: undefined 10: Experimental Residual EM
Select [2]: <CR> *** Select default RAW data
The RAW data curve is included in the .P-file for all points.
Writing plot file "SAMCR.P"
Processing . . .
    PROCESSING SUMMARY:
        5 4 ~ p o i n t s ~ w e r e ~ s u c c e s s f u l l y ~ r e a d .
        5 4 \text { points were processed as requested.}
        0 points were not processable as requested.
    434 lines were successfully read from the .S-file.
Time used: 10.2 sec. ( 0.2 min.) Start: 13:19:27, Stop: 13:19:37
Log file "SAMCR.LOG" closed.
Data filename [quit]: <CR> *** No more data files ***
Thank You !
```


Appendix A ... MODE VARIABLES

Control of various aspects of many data processing programs is provided by names called "Modes". Each name refers to a specific program function. For example, the Mode name "AUTO" refers to the automatic mode of program operation, which the user may enable.

Mode changes are recognized when prompted by a program, when read from a Mode file, or when included in an input data file.

MODE PROMPTS, Manual entry

The first prompt after a data filename is requested is commonly a mode prompt. In the following example, user requests are in BOLD type, and the results are typical responses.

```
(Type MENU for assistance with MODEs.)
MODE Change [name?, name= value] : MENU
PROCESSING MODE MENU: Review and changing of mode values.
Change value: type "NAME= value", where NAME is the variabie
        name, followed by "=", then the value to be
        assigned to the variable called NAME.
Description : type "NAME?" for description of value.
This menu \vdots type "MENU", or "M", to list this menu.
List globals: type "GLOBL" or "G"', to list global mode values.
List values : type "LOCAL" or "L", to list local mode values.
Version info: type "VRSN", or "V", for program version info.
Back up : type <CRTL><Z> to back up in program.
All done : type <RETURN>.
MODE Change [name?, name= value] : LIST
    PROCESSING MODE LIST: (Type MENU for assistance)
\begin{tabular}{|r|c|c|c|c|c||}
\hline \begin{tabular}{r} 
CONTROL MODES \\
mode names \\
mode values
\end{tabular} & \begin{tabular}{c} 
AutoRun \\
AUTO \\
YES
\end{tabular} & \begin{tabular}{c} 
LOwFreq \\
FMIN \\
\(1 / 16 ~ H z ~\)
\end{tabular} & \begin{tabular}{c} 
InitGain \\
(not yet) \\
NONE
\end{tabular} & \begin{tabular}{c} 
GridOrgX \\
GORX \\
NONE
\end{tabular} & \begin{tabular}{c} 
GridOrgY \\
GORY \\
NONE
\end{tabular} \\
\hline
\end{tabular}
MODE Change [name?, name= value] : AUTO?
AUTO mode will automatically delete existing output files (if
any), not prompt for MODE changes (if AUTO= YES is included in the
.MDE-file, and exit when completed. Plots will be done as
specified by entries in the .MDE-file (MODE PLOT and VIEW).
Enter: AUTO= No, or Yes.
MODE Change [name?, name= value] : AUTO= yes
MODE Change [name?, name= value] : <RETURN>
(the program continues ...)
```

Display a definition of any Mode by typing the variable name and a question mark (as shown for Mode AUTO). Each program manual includes an appendix of mode definitions defined by that program.

Change the value of a Mode by typing the variable name, an equals sign, and a valid value. Press <RETURN> to indicate that the program should continue.

MODE CHANGE PRIORITIES

Mode changes may be manually entered, added to mode files or to input data files. Mode statements in files include the program name (optional), the Mode name, and the Mode value. Include a dollar sign (\$) in the first column, a colon (:) after the program name (if any), and an equal sign after the Mode name such as:

\$ zPLOT: AUTO= yes

Modes will NOT be changed unless they are from a source with the same or higher priority as the entry to be replaced:

1: default mode values
2: Mode lines in input data files
3: Mode lines in Mode files (global or local)
4: Mode changes made at a MODE prompt

LOCAL MODE FILES

The program will read a Mode file (if it exists) with the same name as the data file and an extension of ".MDE" (like LINE10.MDE). Specify a different Mode file from the DOS prompt, by entering the program name, data file name, then Mode file name. Include the filename extension if not the same as the default. For example:

Start ZPLOT by:				ZPLOT looks for files named:	
C: >	ZPLOT	LINE10		LINE10.z	LINE10.MDE
C:>	ZPLOT	LINE10	PROJECT	LINE10.z	PROJECT.MDE
C: >	ZPLOT	LINE10.zZ	PROJECT.MOD	LINE10.ZZ	PROJECT.MOD

GLOBAL MODE FILES

Frequently used Mode statements may be included in a file named "DATPRO.MDE" and located in any subdirectory included on your PATH. Or, the environment variable DATMDE may specify any Mode file located anywhere on your computer. One of these files will be used automatically by the program, in addition to any local mode file. Your MS-DOS manuals describe environment variables and PATH.

DATA FILE MODE STATEMENTS

Mode statements may be included in an input data file (near the top of the file). Some programs will include Mode statements in output data files, for use by subsequent programs.

CRRED MODE LIST

(v 7.0x)
PROCESSING MODE DEFAULT VALUES:

TXBRG

CSAMT Transmitter bearing (10 chr max)
Values: TXBRG= CSAMT Transmitter Bearing
Default: TXBRG= (blank)

TXDIS

CSAMT Transmitter distance from survey line (10 chr max)

Values: TXDIS = Distance from Rx Line to Tx
Default: TXDIS = (blank)

TXCX

CSAMT Transmitter center, X-coordinate If units in feet or meters are not included, mode UNITS will be used.

Values: TXCX=
X-coordinate of center of Tx dipole. (10 chr max)
Default: TXCX= (blank)

TXCY

CSAMT Transmitter center, Y-coordinate
If units in feet or meters are not included, mode UNITS will be used.

Values: TXCY=
Y-coordinate of center of Tx dipole. (10 chr max)
Default: TXCY= (blank)
RX2TX
CSAMT Receiver to Transmitter direction
Values: RX2TX=
Direction from Rx Line to Tx (10 chr max)
Default: RX2TX= (blank)

RXBRG

Receive dipole bearing, usually same as survey line orientation

Values: RXBRG=

Receiver Dipole Bearing (10 chr max)
Default: RXBRG= (blank)

COMWIRE

Communications wire type, used for decalibration of GDP-12 data

Values: COMWIRE= NONE,
1WHITE, 2WHITE, or BLACK.
Default: COMWIRE= NONE

PLTREV

Plot X-axis reverse selection
Values: PLTREV=No, or Yes.
Default: PLTREV= NO

UNITS

Units for listed values, such as A-Spacing. Feet or meters.

Values: UNITS= Feet or Meters.
Default: UNITS $=$ Meters

AUTO

AUTO mode will automatically delete existing output files (if any), not prompt for MODE changes (if AUTO $=$ YES is included in the .MDE-file) and exit when completed.

Values: $\mathrm{AUTO}=\mathrm{No}$, or Yes.
Default: $\mathrm{AUTO}=$ No

MENU

Specify one processing selection for automatic operation by CRRED.

```
MENU= 0: Default.
    Provide manual prompts and selections.
MENU= 1: PLOT FILE: .P-file for LPLOT or PPLOT.
    Raw Data (decalibrated) will be included in the .P-file.
MENU= 2: LISTING FILE: .L-file, one page per data point.
    Parameters and Raw Spectra data list are included.
    Decoupled points include Coupling and IP Response data.
MENU= 3: SPECTRAL PLOTS: .Xnn-file(s), one per data point.
    Plot 1: scaled to Raw Spectra data.
    Plot 2: scaled to IP Response data (decoupled points only).
MENU= 4: MAG & PHZ vs FREQ PLOTS: .Xnn-file(s), one per data point.
    Plot 1: scaled to Raw Spectra data.
    Plot 2: scaled to IP Response data (decoupled points only).
MENU= 5: COMBINATION PLOTS: .Xnn-file(s), one per data point.
    Plot 1: Spectral Plot, scaled to Raw Spectra data.
    Plot 2: MAG & PHZ vs Freq Plot, scaled to Raw Spectra data.
```

If the mode file (.MDE-file) includes modes AUTO and MENU, and the program is started by "CRRED filename", then no prompts will be made.

Values: MENU= None, Pfile, Lstfile or plots: R/I, M/P or Combo.
Default: MENU= None

VIEW

Screen plots of data as they are written may be selected by mode VIEW.

Values: VIEW = NONE (No), or SCREEN (Yes)
Default: VIEW= No

FMAX

Data whose high frequency values are not usable can be ignored by setting mode FMAX to a desired high frequency.

A fundamental or harmonic frequency may be entered, in Hertz. The entry may be specified as an expression or as a numeric value, like
(1): " 0.375 " or " $3 / 8$ "
(2) " 24 " or " $3 * 8$ "
(3) " 3072 " or " $3 * 1024$ "

Values: $\mathrm{FMAX}=\mathrm{ALL}$ or frequency (Hz) (fraction or numeric)

Default: FMAX= ALL

HARMONIC

Limit the maximum harmonic to be processed by setting mode HARMONIC. Any value other than $1,3,5,7$ will be set to 9 (displayed as NONE).

Values: HARMONIC $=$ NONE, 1, 3, 5, 7 , or 9.
Default: HARMONIC= NONE
(same as HARMONIC=9)

Appendix B ... SAMPLE FILES

Sample .LOG-file

```
CRRED 7.01, Processed: 24 Nov 92
GLOBAL MODE LIST:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{COMP ANY} & JOBNUMB & CSAMT XMTR \\
\hline \multicolumn{3}{|l|}{Zonge Engineering} & 000 & \\
\hline \multicolumn{3}{|l|}{CLIENT} & JOBDATE & TXLEN \\
\hline \multicolumn{3}{|l|}{ZONGE ENGINEERING} & SEP 91 & \\
\hline \multicolumn{3}{|l|}{PROJECT} & JOBLINE & TXBRG \\
\hline \multicolumn{3}{|l|}{Sample Data} & 10 & \\
\hline BRGBACK & RXBRG & BRGLINE & FRQLO & TXDIS \\
\hline S 85 W & N 85 E & N 85 E & \(1 / 8 \mathrm{~Hz}\) & \\
\hline STNLO & STNDELT & STNHI & FRQHI & RX2TX \\
\hline -3.0 & 1.0 & 10.0 & \(1 / 8 \mathrm{~Hz}\) & \\
\hline LBLFRST & LBLDELT & PLTREV & UNITS & \\
\hline STNLO & 1.0 & NO & METERS & \\
\hline
\end{tabular}
PROCESSING MODES USED:
\begin{tabular}{|c|c|c|c|c|c|}
\hline CONTROL MODES mode names mode values & \begin{tabular}{l}
AutoRun AUTO \\
YES
\end{tabular} & Choice MENU PFILE & \begin{tabular}{l}
Screen \\
VIEW \\
NONE
\end{tabular} & \begin{tabular}{l}
HiFreq \\
FMAX \\
ALL
\end{tabular} & HarmLimit HARM NONE \\
\hline
\end{tabular}
```

```
    Files used: "SAMCR.S" and "SAMCR.MDE"
```

 Files used: "SAMCR.S" and "SAMCR.MDE"
 Writing plot file "SAMCR.P"
Processing . . .
PROCESSING SUMMARY:
5 4 ~ p o i n t s ~ w e r e ~ s u c c e s s f u l l y ~ r e a d .
5 4 points were processed as requested.
0 points were not processable as requested.
4 3 4 ~ l i n e s ~ w e r e ~ s u c c e s s f u l l y ~ r e a d ~ f r o m ~ t h e ~ . S - f i l e .
Log file "SAMCR.LOG" closed.

```

\section*{Sample .S-file}
\begin{tabular}{|c|c|}
\hline Rx: & \begin{tabular}{l}
S", from CRAVG 7.01 \\
2. Tx: 6. NSP: 3.0
\end{tabular} \\
\hline 000 & \(5 \quad 5 \quad 96.052 \quad 200.0\) \\
\hline SEM & \(1.0000 \mathrm{E}-041.5000 \mathrm{E}-04\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+003.8000 \mathrm{E}-03\) \\
\hline 0.375 & \(9.9685 \mathrm{E}-013.4890 \mathrm{E}-03\) \\
\hline 0.625 & 9.9598E-01 4.0171E-03 \\
\hline 0.875 & \(9.9523 \mathrm{E}-012.9857 \mathrm{E}-03\) \\
\hline 1.125 & \(9.9411 \mathrm{E}-013.4794 \mathrm{E}-03\) \\
\hline Rx & 1. Tx: 6. NSP: 4.0 \\
\hline 000 & 5 5 85.855 200.0 \\
\hline SEM & \(2.3000 \mathrm{E}-043.4000 \mathrm{E}-04\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+002.0000 \mathrm{E}-03\) \\
\hline 0.375 & \(9.9791 \mathrm{E}-011.7630 \mathrm{E}-03\) \\
\hline 0.625 & 9.9781E-01 3.0267E-03 \\
\hline 0.875 & \(9.9780 \mathrm{E}-011.7295 \mathrm{E}-03\) \\
\hline 1.125 & 9.9677E-01 2.8242E-03 \\
\hline Rx: & 0. Tx: 6. NSP: 5.0 \\
\hline 000 & \(5 \quad 5 \quad 87.857 \quad 200.0\) \\
\hline SEM & \(4.0000 \mathrm{E}-046.4000 \mathrm{E}-04\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+001.6667 \mathrm{E}-03\) \\
\hline 0.3 & 9.9810E-01 1.1977E-03 \\
\hline 0.625 & 9.9952E-01 4.2313E-03 \\
\hline 0.875 & 9.9942E-01 3.1315E-03 \\
\hline 1.125 & 9.9820E-01 6.4551E-03 \\
\hline Rx: & Tx: 6. NSP: 6.0 \\
\hline 000 & \(5 \quad 5 \quad 171.925 \quad 200.0\) \\
\hline EM & \(6.0000 \mathrm{E}-049.7000 \mathrm{E}-04\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+002.6667 \mathrm{E}-03\) \\
\hline 0.375 & 9.9656E-01 3.3883E-03 \\
\hline 0.625 & \(9.9726 \mathrm{E}-018.0115 \mathrm{E}-03\) \\
\hline 0.875 & 9.9811E-01 5.4564E-03 \\
\hline 1.125 & 9.9473E-01 1.0876E-02 \\
\hline Rx: & 2. Tx: 6. NSP: 7.0 \\
\hline 00 & \(55270.02 \quad 200.0\) \\
\hline SEM & \(1.0900 \mathrm{E}-031.2400 \mathrm{E}-03\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+005.2667 \mathrm{E}-03\) \\
\hline 0.37 & \(9.9420 \mathrm{E}-014.8385 \mathrm{E}-03\) \\
\hline 0.625 & 9.9494E-01 1.2603E-02 \\
\hline 0.875 & 9.9570E-01 8.1317E-03 \\
\hline 1.125 & 9.9159E-01 1.6561E-02 \\
\hline Rx: & 3. Tx: 6. NSP: 8.0 \\
\hline 000 & \(5 \quad 5 \quad 430.134 \quad 200.0\) \\
\hline SEM & \(1.1000 \mathrm{E}-031.6500 \mathrm{E}-03\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+006.0667 \mathrm{E}-03\) \\
\hline 0.375 & 9.9293E-01 6.3879E-03 \\
\hline 0.625 & 9.9387E-01 1.5472E-02 \\
\hline 0.875 & \(9.9434 \mathrm{E}-011.0938 \mathrm{E}-02\) \\
\hline 1.125 & 9.8927E-01 2.2460E-02 \\
\hline Rx: & 2. Tx: 5. NSP: 2.0 \\
\hline 000 & \(5 \quad 5 \quad 105.053 \quad 200.0\) \\
\hline SEM & \(3.0000 \mathrm{E}-054.0000 \mathrm{E}-05\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+003.1000 \mathrm{E}-03\) \\
\hline 0.375 & 9.9777E-01 3.1929E-03 \\
\hline 0.625 & \(9.9630 \mathrm{E}-013.1384 \mathrm{E}-03\) \\
\hline 0.875 & \(9.9545 \mathrm{E}-012.6877 \mathrm{E}-03\) \\
\hline 1.125 & \(9.9518 \mathrm{E}-012.4879 \mathrm{E}-03\) \\
\hline Rx: & 1. Tx: 5. NSP: 3.0 \\
\hline 000 & \(\begin{array}{llll}5 & 5 & 69.31 & 200.0\end{array}\) \\
\hline SEM & \(1.0000 \mathrm{E}-041.3000 \mathrm{E}-04\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+004.1500 \mathrm{E}-03\) \\
\hline 0.375 & \(9.9740 \mathrm{E}-013.6405 \mathrm{E}-03\) \\
\hline 0.625 & 9.9543E-01 3.6831E-03 \\
\hline 0.875 & \(9.9394 \mathrm{E}-012.3855 \mathrm{E}-03\) \\
\hline 1.125 & \(9.9465 \mathrm{E}-013.5310 \mathrm{E}-03\) \\
\hline Rx: & 0. Tx: 5. NSP: 4.0 \\
\hline 000 & \(5 \quad 5 \quad 64.962 \quad 200.0\) \\
\hline SEM & \(2.3000 \mathrm{E}-049.6000 \mathrm{E}-04\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+003.3500 \mathrm{E}-03\) \\
\hline 0.375 & 9.9681E-01 2.7911E-03 \\
\hline 0.625 & \(9.9473 \mathrm{E}-014.1281 \mathrm{E}-03\) \\
\hline 0.875 & \(9.9324 \mathrm{E}-012.7811 \mathrm{E}-03\) \\
\hline 1.125 & 9.9641E-01 3.3380E-03 \\
\hline
\end{tabular}

Rx: -1. Tx: 5. NSP: 5.0
\(\begin{array}{lllllll}0 & 0 & 0 & 5 & 5 & 121.75 & 200.0\end{array}\) SEM \(3.6000 \mathrm{E}-041.0500 \mathrm{E}-03\) \(0.1251 .0000 \mathrm{E}+00 \quad 6.0501 \mathrm{E}-03\) 0.375 9.9787E-01 6.1869E-03 0.625 9.9388E-01 6.9076E-03 0.875 9.8882E-01 4.1036E-03 1.125 9.9245E-01 8.9323E-03 Rx: \(\quad-2 . \operatorname{Tx}: \quad 5 . \mathrm{NSP}: 6.0\) SEM \(6.0000 \mathrm{E}-04 \quad 7.8000 \mathrm{E}-04\) \(0.125 \quad 1.0000 \mathrm{E}+00 \quad 7.8002 \mathrm{E}-03\) 0.375 9.9635E-01 7.1240E-03 0.625 9.8996E-01 9.1574E-03 \(0.8759 .8432 \mathrm{E}-01 \quad 4.7248 \mathrm{E}-03\) \(1.1259 .9132 \mathrm{E}-011.0806 \mathrm{E}-02\) \(\begin{array}{lllllllll} & 0 & 0 & 5 & 5 & 294.275 & 200.0\end{array}\) SEM \(7.7000 \mathrm{E}-041.0400 \mathrm{E}-03\) \(0.1251 .0000 \mathrm{E}+008.8502 \mathrm{E}-03\) \(0.3759 .9625 \mathrm{E}-018.3687 \mathrm{E}-03\) \(0.6259 .8784 \mathrm{E}-01 \quad 1.1311 \mathrm{E}-02\) \(0.8759 .8036 \mathrm{E}-01 \quad 5.2940 \mathrm{E}-03\) \(1.1259 .8879 \mathrm{E}-011.3152 \mathrm{E}-02\)
Rx: 2. Tx: 4. NSP: 1.0 \(\begin{array}{lllllll}0 & 0 & 0 & 5 & 5 & 133.897 & 200.0\end{array}\) SEM \(1.0000 \mathrm{E}-051.0000 \mathrm{E}-05\) \(0.1251 .0000 \mathrm{E}+001.7000 \mathrm{E}-03\) \(0.3759 .9855 \mathrm{E}-01 \quad 1.9472 \mathrm{E}-03\) 0.625 9.9779E-01 1.8459E-03 \(0.8759 .9727 \mathrm{E}-011.7452 \mathrm{E}-03\) \(1.1259 .9668 \mathrm{E}-01 \quad 1.3954 \mathrm{E}-03\) \(\begin{array}{cllll}\text { Rx: } & & \text { 1. Tx: } & \text { 4. NSP: } 2.0 \\ 0 & 0 & 0 & 5 & 5\end{array}\) SEM \(3.0000 \mathrm{E}-053.0000 \mathrm{E}-05\) \(0.125 \quad 1.0000 \mathrm{E}+00 \quad 4.2000 \mathrm{E}-03\) 0.375 9.9689E-01 \(3.9876 \mathrm{E}-03\) \(0.6259 .9559 \mathrm{E}-01 \quad 3.7335 \mathrm{E}-03\) \(0.8759 .9463 \mathrm{E}-01 \quad 3.6802 \mathrm{E}-03\) \(\begin{array}{rl}1.125 & 9.9360 \mathrm{E}-01 \\ \mathrm{RX} & 3.4279 \mathrm{E}-03 \\ \mathrm{~T} & \mathrm{Tx}: \\ \text { 4. NSP: } 3.0\end{array}\) \(\begin{array}{llllll}0 & 0 & 5 & 5 & 84.754 & 200.0\end{array}\) SEM \(1.0000 \mathrm{E}-041.5000 \mathrm{E}-04\) \(0.1251 .0000 \mathrm{E}+00 \quad 5.1000 \mathrm{E}-03\) 0.375 9.9650E-01 4.6337E-03 \(0.6259 .9512 \mathrm{E}-014.8761 \mathrm{E}-03\) \(0.875 \quad 9.9394 \mathrm{E}-01 \quad 4.8207 \mathrm{E}-03\) 1.125 9.9313E-01 6.1078E-03 \(\begin{array}{llllllll}0 & 0 & 0 & 5 & 5 & 164.601 & 200.0\end{array}\) SEM \(1.1000 \mathrm{E}-04 \quad 1.4000 \mathrm{E}-04\) \(0.1251 .0000 \mathrm{E}+00 \quad 7.0501 \mathrm{E}-03\) 0.375 9.9493E-01 7.1139E-03 \(0.6259 .9284 \mathrm{E}-01 \quad 6.9003 \mathrm{E}-03\) 0.875 9.9180E-01 7.3891E-03 \(1.1259 .8954 \mathrm{E}-01\) 7.8176E-03 Rx: -2. Tx: 4. NSP: 5.0 \(\begin{array}{lllllll}0 & 0 & 0 & 5 & 5 & 256.177 & 200.0\end{array}\) SEM \(1.8000 \mathrm{E}-042.5000 \mathrm{E}-04\) \(0.1251 .0000 \mathrm{E}+009.5503 \mathrm{E}-03\) \(0.375 \quad 9.9291 \mathrm{E}-01 \quad 9.5819 \mathrm{E}-03\) \(0.6259 .9029 \mathrm{E}-01 \quad 9.2594 \mathrm{E}-03\) \(0.8759 .8872 \mathrm{E}-019.8875 \mathrm{E}-03\) \(1.1259 .8497 \mathrm{E}-01 \quad 1.0786 \mathrm{E}-02\) \(\begin{array}{ccccc}\text { Rx: } & -3 . & \text { Tx: } & 4 . & \text { NSP: } \\ 0 & 0 & 0 & 5 & 5\end{array}\) SEM \(2.3000 \mathrm{E}-043.2000 \mathrm{E}-04\) \(0.1251 .0000 \mathrm{E}+00 \quad 1.0900 \mathrm{E}-02\) 0.375 9.9220E-01 \(1.0815 \mathrm{E}-02\) 0.625 9.8910E-01 1.0435E-02 0.875 9.8733E-01 1.1552E-02 \(1.1259 .8250 \mathrm{E}-01 \quad 1.2822 \mathrm{E}-02\)

Rx: 1. Tx: 3. NSP: 1.0 \(\begin{array}{lllllll}0 & 0 & 0 & 5 & 5 & 88.347 & 200.0\end{array}\) SEM \(2.0000 \mathrm{E}-052.0000 \mathrm{E}-05\) \(0.1251 .0000 \mathrm{E}+002.0500 \mathrm{E}-03\) \(0.3759 .9839 \mathrm{E}-01 \quad 2.1465 \mathrm{E}-03\) \(0.6259 .9752 \mathrm{E}-012.0449 \mathrm{E}-03\) \(0.8759 .9698 \mathrm{E}-011.6949 \mathrm{E}-03\) \(1.1259 .9650 \mathrm{E}-011.6442 \mathrm{E}-03\) Rx: 0. Tx: \(\quad 3 . \mathrm{NSP}: 2.0\) \(\begin{array}{llllll}0 & 0 & 5 & 89.501 & 200.0\end{array}\) SEM \(1.4000 \mathrm{E}-04 \quad 1.4000 \mathrm{E}-04\) \(0.1251 .0000 \mathrm{E}+003.9500 \mathrm{E}-03\) \(0.3759 .9741 \mathrm{E}-01 \quad 3.9398 \mathrm{E}-03\) \(0.6259 .9621 \mathrm{E}-01 \quad 4.2339 \mathrm{E}-03\) \(0.8759 .9732 \mathrm{E}-01 \quad 6.5325 \mathrm{E}-03\) \(1.1259 .9441 \mathrm{E}-01 \quad 7.0107 \mathrm{E}-03\) Rx: -1. Tx: 3. NSP: 3.0 \(\begin{array}{lllllll}0 & 0 & 0 & 5 & 5 & 193.83 & 200.0\end{array}\) SEM \(1.6000 \mathrm{E}-041.7000 \mathrm{E}-04\) \(0.1251 .0000 \mathrm{E}+005.6001 \mathrm{E}-03\) \(0.3759 .9589 \mathrm{E}-01 \quad 5.6766 \mathrm{E}-03\) \(0.625 \quad 9.9411 \mathrm{E}-01 \quad 6.3624 \mathrm{E}-03\) 0.875 9.9348E-01 6.9545E-03 \(1.1259 .9126 \mathrm{E}-017.6328 \mathrm{E}-03\) Rx: -2. Tx: 3. NSP: 4.0 \(\begin{array}{lllllll}0 & 0 & 0 & 5 & 5 & 323.229 & 200.0\end{array}\) SEM 2.5000E-04 6.0000E-04 \(0.1251 .0000 \mathrm{E}+008.0002 \mathrm{E}-03\) \(0.3759 .9430 \mathrm{E}-01 \quad 7.6066 \mathrm{E}-03\) 0.625 9.9183E-01 8.4804E-03 0.875 9.9067E-01 9.0153E-03 \(1.1259 .8691 \mathrm{E}-019.1785 \mathrm{E}-03\) Rx: -3. Tx: 3. NSP: 5.0 \(0 \begin{array}{llllll}0 & 0 & 5 & 5 & 553.527 & 200.0\end{array}\) SEM 4.0000E-04 9.5000E-04 \(0.1251 .0000 \mathrm{E}+001.0350 \mathrm{E}-02\) \(0.3759 .9197 \mathrm{E}-011.0069 \mathrm{E}-02\) \(0.6259 .8868 \mathrm{E}-011.0579 \mathrm{E}-02\) \(0.8759 .8777 \mathrm{E}-011.1656 \mathrm{E}-02\) \(1.1259 .8339 \mathrm{E}-011.3867 \mathrm{E}-02\) Rx: 0. Tx: 2. NSP: 1.0 \(\begin{array}{llllll}0 & 0 & 0 & 5 & 130.331 & 200.0\end{array}\) SEM \(1.0000 \mathrm{E}-041.2000 \mathrm{E}-04\) \(0.125 \quad 1.0000 \mathrm{E}+004.5000 \mathrm{E}-04\) \(0.3759 .9918 \mathrm{E}-01 \quad 3.9967 \mathrm{E}-04\) \(0.6259 .9758 \mathrm{E}-01-1.4964 \mathrm{E}-04\) \(0.8759 .9830 \mathrm{E}-01-7.4872 \mathrm{E}-04\) \(1.1259 .9660 \mathrm{E}-01-1.7441 \mathrm{E}-03\) Rx: -1. Tx: 2. NSP: 2.0 \(\begin{array}{llllll}0 & 0 & 0 & 5 & 536.156 & 200.0\end{array}\) SEM \(4.0000 \mathrm{E}-05 \quad 4.0000 \mathrm{E}-05\) \(0.1251 .0000 \mathrm{E}+002.8500 \mathrm{E}-03\) 0.375 9.9788E-01 3.3429E-03 \(0.6259 .9672 \mathrm{E}-01 \quad 3.6879 \mathrm{E}-03\) 0.875 9.9551E-01 3.4843E-03 1.125 9.9538E-01 3.5834E-03 Rx: -2. Tx: 2. NSP: 3.0 \(\begin{array}{lllllll}0 & 0 & 0 & 5 & 5 & 602.329 & 200.0\end{array}\) SEM 1.0000E-04 1.0000E-04 \(0.1251 .0000 \mathrm{E}+006.2501 \mathrm{E}-03\) \(0.3759 .9547 \mathrm{E}-01 \quad 7.1675 \mathrm{E}-03\) 0.625 9.9335E-01 7.7483E-03 \(0.8759 .9104 \mathrm{E}-017.5816 \mathrm{E}-03\) \(1.1259 .9052 \mathrm{E}-018.0729 \mathrm{E}-03\) Rx: -3. Tx: 2. NSP: 4.0 \(0 \quad 0 \quad 0 \quad 5 \quad 5 \quad 1125.703 \quad 200.0\) SEM \(1.4000 \mathrm{E}-041.7000 \mathrm{E}-04\) \(0.125 \quad 1.0000 \mathrm{E}+00 \quad 7.8502 \mathrm{E}-03\) 0.375 9.9455E-01 8.9014E-03 0.625 9.9182E-01 1.0167E-02 \(0.8759 .8851 \mathrm{E}-019.6878 \mathrm{E}-03\) \(1.1259 .8790 \mathrm{E}-01 \quad 1.0867 \mathrm{E}-02\)
continued next column ...
continued next column ...

\section*{Sample .S-file (page 2)}
\begin{tabular}{|c|c|}
\hline Rx: - & -1. \\
\hline 000 & \(55134.45 \quad 200.0\) \\
\hline SEM & \(1.0000 \mathrm{E}-052.0000 \mathrm{E}-05\) \\
\hline 0.125 & 000E+00 1.1000E-03 \\
\hline 0.375 & \(9.9909 \mathrm{E}-011.5486 \mathrm{E}-03\) \\
\hline 0.625 & \(9.9851 \mathrm{E}-011.6975 \mathrm{E}-03\) \\
\hline 0.875 & \(9.9821 \mathrm{E}-011.8467 \mathrm{E}-03\) \\
\hline 125 & \(9.9780 \mathrm{E}-011.7960 \mathrm{E}-03\) \\
\hline Rx: & 2. Tx: 1. NSP: 2.0 \\
\hline 000 & \(5 \quad 5 \quad 284.702 \quad 200.0\) \\
\hline SEM & \(2.0000 \mathrm{E}-053.0000 \mathrm{E}-05\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+004.5500 \mathrm{E}-03\) \\
\hline 0.375 & \(9.9654 \mathrm{E}-015.4312 \mathrm{E}-03\) \\
\hline 0.625 & \(9.9478 \mathrm{E}-015.9687 \mathrm{E}-03\) \\
\hline 0.875 & \(9.9364 \mathrm{E}-016.0613 \mathrm{E}-03\) \\
\hline 1.125 & 9.9259E-01 6.1541E-03 \\
\hline Rx: & -3. Tx: 1. NSP: 3.0 \\
\hline 000 & 618.171200 .0 \\
\hline SEM & \(3.0000 \mathrm{E}-054.0000 \mathrm{E}-05\) \\
\hline 0.12 & \(1.0000 \mathrm{E}+006.5001 \mathrm{E}-03\) \\
\hline 0.375 & 9.9533E-01 7.5646E-03 \\
\hline 0.625 & 9.9282E-01 8.3895E-03 \\
\hline 0.875 & \(9.9124 \mathrm{E}-018.9710 \mathrm{E}-03\) \\
\hline 1.125 & 9.9012E-01 9.2084E-03 \\
\hline Rx: & 5. Tx: 1. NSP: 3.0 \\
\hline 0 & 66.619200 .0 \\
\hline SEM & \(5.1000 \mathrm{E}-047.8000 \mathrm{E}-04\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+005.8001 \mathrm{E}-03\) \\
\hline 0.375 & 9.9692E-01 3.3895E-03 \\
\hline 0.625 & \(9.9488 \mathrm{E}-013.0178 \mathrm{E}-03\) \\
\hline 0.875 & \(9.9359 \mathrm{E}-014.1731 \mathrm{E}-03\) \\
\hline 1.125 & 9.9283E-01 3.7397E-03 \\
\hline Rx: & 6. Tx: 1. NSP: 4.0 \\
\hline 000 & 82.479200 .0 \\
\hline SEM & \(1.9000 \mathrm{E}-042.0000 \mathrm{E}-04\) \\
\hline 0.12 & \(1.0000 \mathrm{E}+002.2333 \mathrm{E}-03\) \\
\hline 0. & 9.9849E-01 2.5295E-03 \\
\hline 0.625 & 9.9759E-01 3.2921E-03 \\
\hline 0.875 & \(9.9834 \mathrm{E}-012.9617 \mathrm{E}-03\) \\
\hline 1.125 & \(9.9661 \mathrm{E}-013.7539 \mathrm{E}-03\) \\
\hline Rx: & 7. Tx: 1. NSP: 5.0 \\
\hline 000 & 5 5 114.302 200.0 \\
\hline SEM & \(2.8000 \mathrm{E}-044.0000 \mathrm{E}-04\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+002.9667 \mathrm{E}-03\) \\
\hline 0.375 & \(9.9752 \mathrm{E}-014.0898 \mathrm{E}-03\) \\
\hline 0. & \(9.9677 \mathrm{E}-015.3161 \mathrm{E}-03\) \\
\hline 0.875 & \(9.9851 \mathrm{E}-015.0259 \mathrm{E}-03\) \\
\hline 1.125 & 9.9412E-01 7.6880E-03 \\
\hline Rx: & 8. Tx: 1. NSP: 6.0 \\
\hline 000 & \(5 \quad 5 \quad 149.739 \quad 200.0\) \\
\hline SEM & \(4.9000 \mathrm{E}-045.7000 \mathrm{E}-04\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+004.1000 \mathrm{E}-03\) \\
\hline 0.3 & \(9.9677 \mathrm{E}-015.6152 \mathrm{E}-03\) \\
\hline 0.625 & \(9.9567 \mathrm{E}-017.6336 \mathrm{E}-03\) \\
\hline 0.875 & 9.9737E-01 7.2476E-03 \\
\hline 1.125 & 9.9291E-01 1.0128E-02 \\
\hline Rx: & 9. Tx: 1. NSP: 7.0 \\
\hline 000 & \(5 \quad 5 \quad 166.572 \quad 200.0\) \\
\hline SEM & \(6.1000 \mathrm{E}-046.9000 \mathrm{E}-04\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+005.0667 \mathrm{E}-03\) \\
\hline 0.375 & 9.9587E-01 6.9712E-03 \\
\hline 0.625 & \(9.9414 \mathrm{E}-011.0041 \mathrm{E}-02\) \\
\hline 0.875 & \(9.9693 \mathrm{E}-019.0723 \mathrm{E}-03\) \\
\hline 1.125 & \(9.9087 \mathrm{E}-011.2915 \mathrm{E}-02\) \\
\hline Rx: & 5. Tx: 2. NSP: 2.0 \\
\hline 00 & \(113.827 \quad 200.0\) \\
\hline SEM & \(6.2000 \mathrm{E}-046.7000 \mathrm{E}-04\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+003.1000 \mathrm{E}-03\) \\
\hline 0.375 & 9.9642E-01 3.7366E-03 \\
\hline 0.625 & \(9.9685 \mathrm{E}-011.8940 \mathrm{E}-03\) \\
\hline 0.875 & \(9.9562 \mathrm{E}-013.6340 \mathrm{E}-03\) \\
\hline 1.125 & 9.918E-01 3.7779E-03 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Rx: & NS \\
\hline 000 & . 88200 \\
\hline SEM & \(2.5000 \mathrm{E}-043.1000 \mathrm{E}-04\) \\
\hline . 125 & \(1.0000 \mathrm{E}+003.6500 \mathrm{E}-03\) \\
\hline 0.375 & \(9.9698 \mathrm{E}-014.0378 \mathrm{E}-03\) \\
\hline 0.62 & \(9.9536 \mathrm{E}-013.7824 \mathrm{E}-03\) \\
\hline 0.87 & \(9.9424 \mathrm{E}-014.1758 \mathrm{E}-03\) \\
\hline 1.125 & \(9.9206 \mathrm{E}-015.7044 \mathrm{E}-03\) \\
\hline R & 7. Tx: 2. NSP: 4.0 \\
\hline 0 & \(5 \quad 5 \quad 137.629 \quad 200.0\) \\
\hline SEM & \(5.0000 \mathrm{E}-048.0000 \mathrm{E}-04\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+004.9500 \mathrm{E}-03\) \\
\hline 0.37 & 9.9577E-01 5.1283E-03 \\
\hline 0.6 & 9.9279E-01 6.2547E-03 \\
\hline 0.875 & \(9.9166 \mathrm{E}-017.3384 \mathrm{E}-03\) \\
\hline 1.125 & \(9.8747 \mathrm{E}-011.1208 \mathrm{E}-02\) \\
\hline Rx: & 8. Tx: 2. NSP: 5.0 \\
\hline 00 & \(5 \quad 5 \quad 180.672 \quad 200.0\) \\
\hline SEM & \(7.8000 \mathrm{E}-041.1500 \mathrm{E}-03\) \\
\hline 0.12 & \(1.0000 \mathrm{E}+006.0501 \mathrm{E}-03\) \\
\hline 0. & \(9.9449 \mathrm{E}-017.5085 \mathrm{E}-03\) \\
\hline 0.625 & \(9.9138 \mathrm{E}-017.9312 \mathrm{E}-03\) \\
\hline 0.8 & \(9.8947 \mathrm{E}-011.0340 \mathrm{E}-02\) \\
\hline 1.125 & 9.8222E-01 1.6355E-02 \\
\hline Rx: & 9. Tx: 2. NSP: 6.0 \\
\hline 0 & \(5 \quad 5 \quad 201.98 \quad 200.0\) \\
\hline SEM & \(1.0400 \mathrm{E}-031.7100 \mathrm{E}-03\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+006.8001 \mathrm{E}-03\) \\
\hline 0.375 & 9.9322E-01 8.9889E-03 \\
\hline . & \(9.8960 \mathrm{E}-019.4509 \mathrm{E}-03\) \\
\hline 0.87 & \(9.8704 \mathrm{E}-011.3375 \mathrm{E}-02\) \\
\hline 1.125 & 9.7666E-01 2.2418E-02 \\
\hline Rx: & 5. Tx: 3. NSP: \\
\hline 00 & \(5 \quad 5 \quad 118.451 \quad 200.0\) \\
\hline SEM & \(2.0000 \mathrm{E}-053.0000 \mathrm{E}-05\) \\
\hline 0.12 & \(1.0000 \mathrm{E}+001.1333 \mathrm{E}-03\) \\
\hline 0.3 & 9.9886E-01 1.1653E-03 \\
\hline 0.625 & 9.9830E-01 9.3174E-04 \\
\hline 0.875 & \(9.9797 \mathrm{E}-015.9878 \mathrm{E}-04\) \\
\hline 1.1 & \(9.9740 \mathrm{E}-016.6493 \mathrm{E}-05\) \\
\hline Rx: & 6. Tx: 3. NSP: 2.0 \\
\hline 000 & \(5 \quad 5 \quad 77.88920\) \\
\hline SEM & \(8.0000 \mathrm{E}-059.0000 \mathrm{E}-05\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+003.2000 \mathrm{E}-03\) \\
\hline 0.375 & \(9.9764 \mathrm{E}-013.0262 \mathrm{E}-03\) \\
\hline 0. & \(9.9648 \mathrm{E}-012.8234 \mathrm{E}-03\) \\
\hline 0.87 & 9.9552E-01 \(2.4888 \mathrm{E}-03\) \\
\hline 1.125 & \(9.9450 \mathrm{E}-011.6244 \mathrm{E}-03\) \\
\hline Rx: & 7. Tx: 3. NSP: \\
\hline 000 & \(5 \quad 5 \quad 90.974 \quad 200.0\) \\
\hline SEM & \(2.3000 \mathrm{E}-043.0000 \mathrm{E}-04\) \\
\hline 0.12 & \(1.0000 \mathrm{E}+005.5001 \mathrm{E}-03\) \\
\hline 0.37 & 9.9560E-01 6.0401E-03 \\
\hline 0.625 & \(9.9286 \mathrm{E}-016.0234 \mathrm{E}-03\) \\
\hline 0.875 & 9.9203E-01 5.7538E-03 \\
\hline 1.125 & 9.9102E-01 4.2284E-03 \\
\hline Rx: & 8. Tx: 3. NSP: 4.0 \\
\hline 000 & \(5 \quad 5 \quad 116.43 \quad 200.0\) \\
\hline SEM & \(4.2000 \mathrm{E}-045.0000 \mathrm{E}-04\) \\
\hline 0.12 & \(1.0000 \mathrm{E}+006.9001 \mathrm{E}-03\) \\
\hline 0.375 & 9.9449E-01 7.5251E-03 \\
\hline 0.625 & 9.9169E-01 7.6361E-03 \\
\hline 0.875 & \(9.9019 \mathrm{E}-017.6577 \mathrm{E}-03\) \\
\hline 1.125 & \(9.8609 \mathrm{E}-013.8458 \mathrm{E}-03\) \\
\hline Rx: & 9. Tx: 3. NSP: 5.0 \\
\hline 00 & \(5 \quad 5 \quad 126.677 \quad 200.0\) \\
\hline SEM & \(7.1000 \mathrm{E}-048.1000 \mathrm{E}-04\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+007.8002 \mathrm{E}-03\) \\
\hline 0.375 & 9.9380E-01 8.5469E-03 \\
\hline 0.625 & \(9.9065 \mathrm{E}-019.1142 \mathrm{E}-03\) \\
\hline 0.875 & 9.8868E-01 9.6894E-03 \\
\hline 1.125 & 9.8287E-01 3.2435E-03 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & 6. Tx: 4. NSP: 1.0 \\
\hline 0 & 200.0 \\
\hline SEM & \(1.0000 \mathrm{E}-052.0000 \mathrm{E}-05\) \\
\hline 0.12 & \(1.0000 \mathrm{E}+00\) \\
\hline 0.375 & 9.9859E-01-1.5977E-03 \\
\hline 62 & 9.9770E-01-3.9409E-03 \\
\hline 0.87 & 9. \\
\hline 1.125 & 3 \\
\hline R & 7. Tx: 4. NSP: 2.0 \\
\hline 000 & 55118.16 \\
\hline SEM & \(8.0000 \mathrm{E}-052.5000 \mathrm{E}-04\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+003.9500 \mathrm{E}-03\) \\
\hline 0.375 & 9.9687E-01 \\
\hline 0. & 9.9551E-01 4.8781E-03 \\
\hline 0.8 & 9.9553E-01 4.9777E-03 \\
\hline 125 & 9.9430E-01 \\
\hline Rx: & 8. Tx: 4. NS \\
\hline 0 & \(5 \quad 5 \quad 154.637 \quad 200.0\) \\
\hline SEM & \(1.2000 \mathrm{E}-041.6000 \mathrm{E}\) \\
\hline 0 & \(1.0000 \mathrm{E}+00\) \\
\hline 0.3 & \(9.9515 \mathrm{E}-017.4638 \mathrm{E}-03\) \\
\hline 0.625 & 9.9252E-01 8.1388E-03 \\
\hline 0.875 & 9.9200E-01 \\
\hline 1.125 & 9.9054E-01 8.7665E-03 \\
\hline Rx: & 9. Tx: 4. NSP: 4.0 \\
\hline 00 & \(5 \quad 5 \quad 176.787 \quad 200.0\) \\
\hline SEM & \(2.1000 \mathrm{E}-042.7000 \mathrm{E}-04\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+007.5501 \mathrm{E}-03\) \\
\hline 0.375 & 9.9405E-01 9.3443E-03 \\
\hline & \(9.9074 \mathrm{E}-01\) \\
\hline 0. & 9.9099E-01 9.6129E-03 \\
\hline 1.125 & 9.8905E-01 1.1424E-02 \\
\hline Rx: & 7. Tx: 5. NSP: 1.0 \\
\hline 00 & 122.581200 .0 \\
\hline SEM & \(5.0000 \mathrm{E}-053.4000 \mathrm{E}-04\) \\
\hline 0. & \(1.0000 \mathrm{E}+003\) \\
\hline 0. & 9.9721E-01 2.7257E-03 \\
\hline & 9.9605E-01 3.3866E-03 \\
\hline & 9.9503E-01 \\
\hline 1.1 & 9.9393E-01 3.9426E-03 \\
\hline Rx: & 8. Tx: 5. NSP: 2.0 \\
\hline 0 & \(5 \quad 5 \quad 174.9 \quad 200.0\) \\
\hline SEM & \(6.0000 \mathrm{E}-057.0000 \mathrm{E}-05\) \\
\hline 0.12 & \(1.0000 \mathrm{E}+005.5001 \mathrm{E}-03\) \\
\hline 0. & \(9.9570 \mathrm{E}-016.4721 \mathrm{E}-03\) \\
\hline & 9.9338E-01 6.8875E-03 \\
\hline 0.8 & \(9.9175 \mathrm{E}-017.3391 \mathrm{E}-03\) \\
\hline 1.125 & 9.9091E-01 7.3328E-03 \\
\hline Rx: & 9. Tx: 5. NSP: \\
\hline 000 & \(5 \quad 5 \quad 219.989200 .0\) \\
\hline SEM & \(1.2000 \mathrm{E}-041.6000 \mathrm{E}-04\) \\
\hline 0.12 & \(1.0000 \mathrm{E}+006.8668 \mathrm{E}-03\) \\
\hline & \(9.9462 \mathrm{E}-018.2887 \mathrm{E}-03\) \\
\hline & 9.9156E-01 8.9904E-03 \\
\hline 0.875 & \(9.9000 \mathrm{E}-019.7683 \mathrm{E}-03\) \\
\hline 1.125 & 9.8912E-01 1.0551E-02 \\
\hline Rx: & 8. Tx: 6. NSP: 1.0 \\
\hline 000 & \(5 \quad 5 \quad 254.35 \quad 200.0\) \\
\hline SEM & \(2.0000 \mathrm{E}-053.0000 \mathrm{E}-05\) \\
\hline 0. & \(1.0000 \mathrm{E}+005.5501 \mathrm{E}-03\) \\
\hline 0.375 & \(9.9555 \mathrm{E}-016.0232 \mathrm{E}-03\) \\
\hline 0.625 & \(9.9294 \mathrm{E}-015.9577 \mathrm{E}-03\) \\
\hline & \(9.9127 \mathrm{E}-015.4520 \mathrm{E}-03\) \\
\hline 1.125 & 9.8995E-01 4.7518E-03 \\
\hline Rx: & 9. Tx: 6. NSP: 2.0 \\
\hline 00 & \(5 \quad 5 \quad 349.726 \quad 200.0\) \\
\hline SEM & \(3.0000 \mathrm{E}-055.0000 \mathrm{E}-05\) \\
\hline 0.125 & \(1.0000 \mathrm{E}+007.6001 \mathrm{E}-03\) \\
\hline & 9.9419E-01 9.0474E-03 \\
\hline 0.625 & \(9.9095 \mathrm{E}-019.7116 \mathrm{E}-03\) \\
\hline 0.875 & 9.8877E-01 9.8880E-03 \\
\hline 1.125 & \(9.8705 \mathrm{E}-011.0019 \mathrm{E}-02\) \\
\hline
\end{tabular}

Rx: 6. Tx: 4. NSP: 1.0 \(\begin{array}{llrrrr}0 & 5 & 5 & 105.289 & 200.0 \\ \text { SEM } & 1.0000 \mathrm{E}-05 & 2.0000 \mathrm{E}-05\end{array}\) \(0.1251 .0000 \mathrm{E}+005.5000 \mathrm{E}-04\) 0.375 9.9859E-01-1.5977E-03 0.625 9.9770E-01-3.9409E-03 9.9725E-01-6.5819E-0 Rx: 7. Tx: 4. NSP: 2.0 \(\begin{array}{llrrr}0 & 0 & 5 & 118.16 & 200.0 \\ \text { SEM } & 8.0000 \mathrm{E}-05 & 2.5000 \mathrm{E}-04\end{array}\) \(0.1251 .0000 \mathrm{E}+003.9500 \mathrm{E}-03\) 0.375 9.9687E-01 4.8847E-03 \(9.9551 \mathrm{E}-014.8781 \mathrm{E}-03\) 0.875 9.9553E-01 4.9777E-03 \(1.1259 .9430 \mathrm{E}-014.8721 \mathrm{E}-03\) \(\begin{array}{lllllll}0 & 0 & 0 & 5 & 5 & 154.637 & 200.0\end{array}\) SEM 1.2000E-04 1.6000E-04 \(0.1251 .0000 \mathrm{E}+006.3001 \mathrm{E}-03\) \(0.3759 .9515 \mathrm{E}-017.4638 \mathrm{E}-03\) \(0.6259 .9252 \mathrm{E}-018.1388 \mathrm{E}-03\) 0.875 9.9200E-01 7.8370E-03 \(0-5\) 176.787 200.0 \(0.1251 .0000 \mathrm{E}+00 \quad 7.5501 \mathrm{E}-03\) 0.375 9.9405E-01 9.3443E-03 \(0.6259 .9074 \mathrm{E}-011.0403 \mathrm{E}-02\) \(0.8759 .9099 \mathrm{E}-01 \quad 9.6129 \mathrm{E}-03\) Rx:
\(00-5\) SEM \(5.0000 \mathrm{E}-05 \quad 3.4000 \mathrm{E}-04\) \(0.1251 .0000 \mathrm{E}+003.2000 \mathrm{E}-03\) \(0.3759 .9721 \mathrm{E}-01 \quad 2.7257 \mathrm{E}-03\) \(0.8759 .9503 \mathrm{E}-01 \quad 3.9470 \mathrm{E}-03\) 1.125 9.9393E-01 3.9426E-03 Rx: SEM 6.0000E-05.9.0000E-05 \(0.1251 .0000 \mathrm{E}+005.5001 \mathrm{E}-03\) 0.375 9.9570E-01 6.4721E-03 \(9.9338 \mathrm{E}-016.8875 \mathrm{E}-03\) 0.875 9.9175E-01 7.3391E-03 \(\begin{array}{ll}1.125 & 9.9091 \mathrm{E}-01 \\ \mathrm{Rx}: & \text { 7.3328E-03 } \\ \text { 9. Tx: } & \text { 5. NSP: } 3.0\end{array}\) \(\begin{array}{lllllll}0 & 0 & 0 & 5 & 219.989 & 200.0\end{array}\) SEM \(1.2000 \mathrm{E}-041.6000 \mathrm{E}-04\) \(0.1251 .0000 \mathrm{E}+00 \quad 6.8668 \mathrm{E}-03\) 0.625 9.9156E-01 \(8.9904 \mathrm{E}-03\) \(0.8759 .9000 \mathrm{E}-019.7683 \mathrm{E}-03\) \(\begin{array}{ll}1.125 & 9.8912 \mathrm{E}-01 \\ \mathrm{Rx}: & \text { 8. Tx: } \\ \text { 1.0551E-02 } \\ \text { 6. NSP: } 1.0\end{array}\)
\(\begin{array}{lllllll}0 & 0 & 0 & 5 & 5 & 254.35 & 200.0\end{array}\) SEM \(2.0000 \mathrm{E}-053.0000 \mathrm{E}-05\) \(1.0000 \mathrm{E}+005.5501 \mathrm{E}-03\) 0.625 9.9294E-01 5.9577E-03 \(0.8759 .9127 \mathrm{E}-015.4520 \mathrm{E}-03\) Rx: 9. Tx. 6 NSP. 0 \(\begin{array}{llllll}0 & 0 & 0 & 5 & 349.726 & 200.0\end{array}\) \(0.1251 .0000 \mathrm{E}+007.6001 \mathrm{E}-03\) \(0.3759 .9419 \mathrm{E}-01 \quad 9.0474 \mathrm{E}-03\) \(0.8759 .8877 \mathrm{E}-019.8880 \mathrm{E}-03\) \(1.1259 .8705 \mathrm{E}-011.0019 \mathrm{E}-02\)

\footnotetext{
continued next column ...
}
continued next column ...
*** end of file \({ }^{* * *}\)

\section*{Sample .P-file}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{24 Nov 92} \\
\hline \multicolumn{6}{|l|}{\$ ASPACE= 200.0 m} \\
\hline \multicolumn{6}{|l|}{"SAMCR.P", from CRRED 7.01} \\
\hline \multicolumn{6}{|l|}{PLOT FILE FOR LPLOT 10} \\
\hline Rx: 2. & Tx: 6. & NSp: 3. & Rx: & Tx: 5. & NSp: 3. \\
\hline 1005 & 96.052 & 0.50 .0 & 100 & \(5 \quad 69.31\) & 0.60 .0 \\
\hline 3.8 & \(4.3-0.2\) & 5.00 .0 & 4.1 & 4.61 .0 & 5.20 .0 \\
\hline 0.1 & 0.24 .5 & 4.80 .0 & 0.1 & 0.14 & 4.90 .0 \\
\hline 0.1251 & \(1.000 \mathrm{E}+00\) & \(3.800 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(4.150 \mathrm{E}-03\) \\
\hline 0.3759 & \(9.969 \mathrm{E}-01\) & \(3.489 \mathrm{E}-03\) & 0.375 & \(9.974 \mathrm{E}-01\) & \(3.640 \mathrm{E}-03\) \\
\hline 0.6259 & \(9.960 \mathrm{E}-01\) & \(4.017 \mathrm{E}-03\) & 0.625 & \(9.954 \mathrm{E}-01\) & \(3.683 \mathrm{E}-03\) \\
\hline 0.8759 & \(9.952 \mathrm{E}-01\) & \(2.986 \mathrm{E}-03\) & 0.875 & \(9.939 \mathrm{E}-01\) & \(2.385 \mathrm{E}-03\) \\
\hline 1.1259 & 9.941E-01 & 3.479E-03 & 1.125 & \(9.947 \mathrm{E}-01\) & 3.531E-03 \\
\hline Rx: 1. & Tx: 6. & NSp: 4 & Rx: 0 . & Tx: 5. & NSp: 4. \\
\hline 1005 & 85.855 & 0.30 .0 & 100 & \(5 \quad 64.962\) & 0.50 .0 \\
\hline 2.0 & \(2.7-4.9\) & 3.90 .0 & 3.3 & \(4.3-4.3\) & 5.80 .0 \\
\hline 0.2 & 0.3 3.0 & 3.60 .0 & 0.2 & 1.04 .8 & 5.50 .0 \\
\hline 0.1251 & \(1.000 \mathrm{E}+00\) & \(2.000 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(3.350 \mathrm{E}-03\) \\
\hline 0.3759 & \(9.979 \mathrm{E}-01\) & \(1.763 \mathrm{E}-03\) & 0.375 & \(9.968 \mathrm{E}-01\) & \(2.791 \mathrm{E}-03\) \\
\hline 0.6259 & \(9.978 \mathrm{E}-01\) & \(3.027 \mathrm{E}-03\) & 0.625 & \(9.947 \mathrm{E}-01\) & \(4.128 \mathrm{E}-03\) \\
\hline 0.8759 & \(9.978 \mathrm{E}-01\) & \(1.730 \mathrm{E}-03\) & 0.875 & \(9.932 \mathrm{E}-01\) & \(2.781 \mathrm{E}-03\) \\
\hline 1.1259 & \(9.968 \mathrm{E}-01\) & \(2.824 \mathrm{E}-03\) & 1.125 & \(9.964 \mathrm{E}-01\) & \(3.338 \mathrm{E}-03\) \\
\hline Rx: 0. & Tx: 6. & NSp: 5. & Rx: -1. & Tx: 5. & NSp: 5. \\
\hline 1005 & 87.857 & 0.10 .0 & 100 & 5121.75 & 0.90 .0 \\
\hline 1.7 & \(3.2-11.1\) & 5.60 .0 & 6.1 & \(6.2-1.6\) & 7.50 .0 \\
\hline 0.4 & 0.64 .0 & 5.50 .0 & 0.4 & 1.06 .3 & 6.60 .0 \\
\hline 0.1251 & \(1.000 \mathrm{E}+00\) & \(1.667 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(6.050 \mathrm{E}-03\) \\
\hline 0.3759 & \(9.981 \mathrm{E}-01\) & \(1.198 \mathrm{E}-03\) & 0.375 & \(9.979 \mathrm{E}-01\) & \(6.187 \mathrm{E}-03\) \\
\hline 0.6259 & \(9.995 \mathrm{E}-01\) & 4.231E-03 & 0.625 & 9.939E-01 & \(6.908 \mathrm{E}-03\) \\
\hline 0.8759 & \(9.994 \mathrm{E}-01\) & 3.131E-03 & 0.875 & \(9.888 \mathrm{E}-01\) & 4.104E-03 \\
\hline 1.1259 & 9.982E-01 & \(6.455 \mathrm{E}-03\) & 1.125 & 9.924E-01 & 8.932E-03 \\
\hline Rx: \(\quad-1\). & Tx: 6. & NSp: 6. & Rx: -2. & Tx: 5. & NSp: 6. \\
\hline 1005 & 171.925 & 0.40 .0 & 100 & 5186.783 & 1.20 .0 \\
\hline 2.7 & \(3.8-17.1\) & 7.20 .0 & 7.8 & \(9.2-8.3\) & 12.10 .0 \\
\hline 0.6 & \(1.0 \quad 4.7\) & 6.30 .0 & 0.6 & 0.89 .8 & 10.90 .0 \\
\hline 0.1251 & \(1.000 \mathrm{E}+00\) & \(2.667 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(7.800 \mathrm{E}-03\) \\
\hline 0.3759 & \(9.966 \mathrm{E}-01\) & \(3.388 \mathrm{E}-03\) & 0.375 & \(9.963 \mathrm{E}-01\) & \(7.124 \mathrm{E}-03\) \\
\hline 0.6259 & \(9.973 \mathrm{E}-01\) & 8.012E-03 & 0.625 & \(9.900 \mathrm{E}-01\) & 9.157E-03 \\
\hline 0.8759 & \(9.981 \mathrm{E}-01\) & \(5.456 \mathrm{E}-03\) & 0.875 & \(9.843 \mathrm{E}-01\) & 4.725E-03 \\
\hline 1.1259 & \(9.947 \mathrm{E}-01\) & \(1.088 \mathrm{E}-02\) & 1.125 & \(9.913 \mathrm{E}-01\) & \(1.081 \mathrm{E}-02\) \\
\hline Rx: -2. & Tx: 6. & NSp: 7. & Rx: -3. & Tx: 5 & NSp: 7. \\
\hline 1005 & 270.02 & 0.60 .0 & 100 & \(5 \quad 294.275\) & 1.60 .0 \\
\hline 5.3 & \(8.5-29.9\) & 14.90 .0 & 8.8 & 10.4-13.2 & 14.30 .0 \\
\hline 1.1 & 1.210 .5 & 13.80 .0 & 0.8 & \(1.0 \quad 11.2\) & 12.60 .0 \\
\hline 0.1251 & \(1.000 \mathrm{E}+00\) & \(5.267 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(8.850 \mathrm{E}-03\) \\
\hline 0.3759 & \(9.942 \mathrm{E}-01\) & \(4.839 \mathrm{E}-03\) & 0.375 & \(9.962 \mathrm{E}-01\) & 8.369E-03 \\
\hline 0.6259 & \(9.949 \mathrm{E}-01\) & 1.260E-02 & 0.625 & \(9.878 \mathrm{E}-01\) & \(1.131 \mathrm{E}-02\) \\
\hline 0.8759 & \(9.957 \mathrm{E}-01\) & 8.132E-03 & 0.875 & \(9.804 \mathrm{E}-01\) & \(5.294 \mathrm{E}-03\) \\
\hline 1.1259 & \(9.916 \mathrm{E}-01\) & \(1.656 \mathrm{E}-02\) & 1.125 & \(9.888 \mathrm{E}-01\) & 1.315E-02 \\
\hline Rx: -3. & Tx: 6. & NSp: 8. & Rx: 2. & Tx: 4. & NSp: 1. \\
\hline 1005 & 430.134 & 0.80 .0 & 100 & \(5 \quad 133.897\) & 0.30 .0 \\
\hline 6.1 & \(9.2-33.0\) & 16.20 .0 & 1.7 & 1.42 .1 & 1.30 .0 \\
\hline 1.1 & 1.611 .3 & 14.90 .0 & 0.0 & \(0.0 \quad 1.4\) & 1.20 .0 \\
\hline 0.1251 & \(1.000 \mathrm{E}+00\) & \(6.067 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(1.700 \mathrm{E}-03\) \\
\hline 0.3759 & \(9.929 \mathrm{E}-01\) & \(6.388 \mathrm{E}-03\) & 0.375 & \(9.985 \mathrm{E}-01\) & \(1.947 \mathrm{E}-03\) \\
\hline 0.6259 & 9.939E-01 & \(1.547 \mathrm{E}-02\) & 0.625 & \(9.978 \mathrm{E}-01\) & \(1.846 \mathrm{E}-03\) \\
\hline 0.8759 & \(9.943 \mathrm{E}-01\) & \(1.094 \mathrm{E}-02\) & 0.875 & \(9.973 \mathrm{E}-01\) & \(1.745 \mathrm{E}-03\) \\
\hline 1.1259 & 9.893E-01 & \(2.246 \mathrm{E}-02\) & 1.125 & \(9.967 \mathrm{E}-01\) & 1.395E-03 \\
\hline Rx: 2. & Tx: 5. & NSp: 2. & Rx: 1. & Tx: 4. & NSp: 2. \\
\hline 1005 & 105.053 & 0.50 .0 & 100 & \(5 \quad 89.295\) & 0.60 .0 \\
\hline 3.1 & 3.02 .5 & 3.10 .0 & 4.2 & 4.34 .8 & 4.20 .0 \\
\hline 0.0 & 0.03 .0 & 2.90 .0 & 0.0 & 0.04 .3 & 4.20 .0 \\
\hline 0.1251 & \(1.000 \mathrm{E}+00\) & \(3.100 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(4.200 \mathrm{E}-03\) \\
\hline 0.3759 & \(9.978 \mathrm{E}-01\) & \(3.193 \mathrm{E}-03\) & 0.375 & \(9.969 \mathrm{E}-01\) & 3.988E-03 \\
\hline 0.6259 & \(9.963 \mathrm{E}-01\) & 3.138E-03 & 0.625 & \(9.956 \mathrm{E}-01\) & 3.733E-03 \\
\hline 0.8759 & \(9.955 \mathrm{E}-01\) & 2.688E-03 & 0.875 & \(9.946 \mathrm{E}-01\) & \(3.680 \mathrm{E}-03\) \\
\hline 1.1259 & \(9.952 \mathrm{E}-01\) & \(2.488 \mathrm{E}-03\) & 1.125 & \(9.936 \mathrm{E}-01\) & \(3.428 \mathrm{E}-03\) \\
\hline
\end{tabular}
continued next column ...
continued next column .../
\begin{tabular}{|c|c|c|}
\hline Rx: 0 & Tx: 4. & NSp: 3. \\
\hline 100 & 84.754 & 0.70 .0 \\
\hline 5.1 & \(5.6 \quad 3.7\) & \(5.9 \quad 0.0\) \\
\hline 0.1 & 0.25 .8 & \(6.0 \quad 0.0\) \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(5.100 \mathrm{E}-03\) \\
\hline 0.375 & \(9.965 \mathrm{E}-01\) & \(4.634 \mathrm{E}-03\) \\
\hline 0.625 & 9.951E-01 & \(4.876 \mathrm{E}-03\) \\
\hline 0.875 & \(9.939 \mathrm{E}-01\) & \(4.821 \mathrm{E}-03\) \\
\hline 1.125 & 9.931E-01 & \(6.108 \mathrm{E}-03\) \\
\hline Rx: -1. & Tx: 4. & NSp: 4. \\
\hline 100 & 164.601 & 0.90 .0 \\
\hline 7.0 & 6.98 .8 & 6.60 .0 \\
\hline 0.1 & 0.16 .8 & \(6.7 \quad 0.0\) \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(7.050 \mathrm{E}-03\) \\
\hline 0.375 & \(9.949 \mathrm{E}-01\) & \(7.114 \mathrm{E}-03\) \\
\hline 0.625 & \(9.928 \mathrm{E}-01\) & \(6.900 \mathrm{E}-03\) \\
\hline 0.875 & \(9.918 \mathrm{E}-01\) & \(7.389 \mathrm{E}-03\) \\
\hline 1.125 & 9.895E-01 & \(7.818 \mathrm{E}-03\) \\
\hline Rx: -2. & Tx: 4. & NSp: 5. \\
\hline 100 & 256.177 & 1.30 .0 \\
\hline 9.6 & 9.311 .9 & 8.90 .0 \\
\hline 0.2 & 0.39 .3 & 9.10 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & 9.550E-03 \\
\hline 0.375 & \(9.929 \mathrm{E}-01\) & 9.582E-03 \\
\hline 0.625 & \(9.903 \mathrm{E}-01\) & \(9.259 \mathrm{E}-03\) \\
\hline 0.875 & \(9.887 \mathrm{E}-01\) & \(9.887 \mathrm{E}-03\) \\
\hline 1.125 & \(9.850 \mathrm{E}-01\) & \(1.079 \mathrm{E}-02\) \\
\hline Rx: -3. & Tx: & NSp: 6. \\
\hline 100 & 412.136 & 1.50 .0 \\
\hline 10.9 & 10.814 .2 & 10.20 .0 \\
\hline 0.2 & 0.310 .7 & 10.50 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(1.090 \mathrm{E}-02\) \\
\hline 0.375 & 9.922E-01 & \(1.082 \mathrm{E}-02\) \\
\hline 0.625 & \(9.891 \mathrm{E}-01\) & \(1.044 \mathrm{E}-02\) \\
\hline 0.875 & 9.873E-01 & \(1.155 \mathrm{E}-02\) \\
\hline 1.125 & 9.825E-01 & \(1.282 \mathrm{E}-02\) \\
\hline Rx : 1 & Tx: 3 . & NSp: 1. \\
\hline 100 & 88.347 & 0.30 .0 \\
\hline 2.0 & 1.91 .8 & 1.90 .0 \\
\hline 0.0 & 0.01 .9 & 1.80 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(2.050 \mathrm{E}-03\) \\
\hline 0.375 & \(9.984 \mathrm{E}-01\) & \(2.146 \mathrm{E}-03\) \\
\hline 0.625 & \(9.975 \mathrm{E}-01\) & \(2.045 \mathrm{E}-03\) \\
\hline 0.875 & \(9.970 \mathrm{E}-01\) & \(1.695 \mathrm{E}-03\) \\
\hline 1.125 & \(9.965 \mathrm{E}-01\) & \(1.644 \mathrm{E}-03\) \\
\hline Rx: 0 & Tx: 3 . & NSp: 2. \\
\hline 100 & 89.501 & 0.40 .0 \\
\hline 3.9 & 4.17 .3 & 3.50 .0 \\
\hline 0.1 & 0.14 .1 & 4.30 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(3.950 \mathrm{E}-03\) \\
\hline 0.375 & 9.974E-01 & \(3.940 \mathrm{E}-03\) \\
\hline 0.625 & 9.962E-01 & \(4.234 \mathrm{E}-03\) \\
\hline 0.875 & 9.973E-01 & \(6.533 \mathrm{E}-03\) \\
\hline 1.125 & \(9.944 \mathrm{E}-01\) & 7.011E-03 \\
\hline Rx: -1. & Tx: 3. & NSp: 3. \\
\hline 100 & 193.83 & 0.80 .0 \\
\hline 5.6 & 5.8 4.5 & \(6.0 \quad 0.0\) \\
\hline 0.2 & 0.25 .9 & 6.20 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(5.600 \mathrm{E}-03\) \\
\hline 0.375 & 9.959E-01 & \(5.677 \mathrm{E}-03\) \\
\hline 0.625 & \(9.941 \mathrm{E}-01\) & \(6.362 \mathrm{E}-03\) \\
\hline 0.875 & 9.935E-01 & \(6.954 \mathrm{E}-03\) \\
\hline 1.125 & 9.913E-01 & \(7.633 \mathrm{E}-03\) \\
\hline
\end{tabular}
continued next page ...

\section*{Sample .P-file (page 2)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Rx: -2. & Tx: & NSp: 4 & Rx: -3. & 3. Tx: & NSp: 3 \\
\hline 1005 & 323.229 & 1.10 .0 & 100 & \(5 \quad 618.171\) & 0.90 .0 \\
\hline 8.0 & 8.65 .6 & 9.10 .0 & 6.5 & 5.95 .9 & \(5.9 \quad 0.0\) \\
\hline 0.3 & 0.68 .9 & 9.40 .0 & 0.0 & 0.05 .8 & 5.80 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(8.000 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(6.500 \mathrm{E}-03\) \\
\hline 0.375 & \(9.943 \mathrm{E}-01\) & \(7.607 \mathrm{E}-03\) & 0.375 & \(9.953 \mathrm{E}-01\) & \(7.565 \mathrm{E}-03\) \\
\hline 0.625 & \(9.918 \mathrm{E}-01\) & \(8.480 \mathrm{E}-03\) & 0.625 & \(9.928 \mathrm{E}-01\) & \(8.389 \mathrm{E}-03\) \\
\hline 0.875 & \(9.907 \mathrm{E}-01\) & \(9.015 \mathrm{E}-03\) & 0.875 & \(9.912 \mathrm{E}-01\) & \(8.971 \mathrm{E}-03\) \\
\hline 1.125 & \(9.869 \mathrm{E}-01\) & 9.178E-03 & 1.125 & \(9.901 \mathrm{E}-01\) & \(9.208 \mathrm{E}-03\) \\
\hline Rx: -3. & Tx: 3. & NSp: 5 & Rx: 5 & 5. Tx: 1 & NSp: 3. \\
\hline 1005 & 553.527 & 1.50 .0 & 100 & \(5 \quad 66.619\) & 0.70 .0 \\
\hline 10.3 & 10.710 .4 & 10.80 .0 & 5.8 & 7.86 .8 & 7.90 .0 \\
\hline 0.4 & 0.910 .9 & 11.20 .0 & 0.5 & 0.88 .2 & 8.90 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(1.035 \mathrm{E}-02\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(5.800 \mathrm{E}-03\) \\
\hline 0.375 & \(9.920 \mathrm{E}-01\) & \(1.007 \mathrm{E}-02\) & 0.375 & \(9.969 \mathrm{E}-01\) & \(3.390 \mathrm{E}-03\) \\
\hline 0.625 & \(9.887 \mathrm{E}-01\) & \(1.058 \mathrm{E}-02\) & 0.625 & \(9.949 \mathrm{E}-01\) & \(3.018 \mathrm{E}-03\) \\
\hline 0.875 & \(9.878 \mathrm{E}-01\) & \(1.166 \mathrm{E}-02\) & 0.875 & \(9.936 \mathrm{E}-01\) & \(4.173 \mathrm{E}-03\) \\
\hline 1.125 & \(9.834 \mathrm{E}-01\) & \(1.387 \mathrm{E}-02\) & 1.125 & \(9.928 \mathrm{E}-01\) & \(3.740 \mathrm{E}-03\) \\
\hline Rx: 0 & Tx: 2. & NSp: 1. & Rx : 6 & 6. Tx: 1. & NSp: 4. \\
\hline 1005 & 130.331 & 0.30 .0 & 100 & \(5 \quad 82.479\) & 0.30 .0 \\
\hline 0.4 & 0.31 .1 & 0.10 .0 & 2.2 & \(2.3-0.7\) & 2.70 .0 \\
\hline 0.1 & 0.10 .2 & 0.00 .0 & 0.2 & 0.22 .4 & 2.60 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(4.500 \mathrm{E}-04\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(2.233 \mathrm{E}-03\) \\
\hline 0.375 & \(9.992 \mathrm{E}-01\) & \(3.997 \mathrm{E}-04\) & 0.375 & \(9.985 \mathrm{E}-01\) & \(2.530 \mathrm{E}-03\) \\
\hline 0.625 & \(9.976 \mathrm{E}-01\) & -1.496E-04 & 0.625 & \(9.976 \mathrm{E}-01\) & 3.292E-03 \\
\hline 0.875 & \(9.983 \mathrm{E}-01\) & -7.487E-04 & 0.875 & \(9.983 \mathrm{E}-01\) & \(2.962 \mathrm{E}-03\) \\
\hline 1.125 & \(9.966 \mathrm{E}-01\) & -1.744E-03 & 1.125 & \(9.966 \mathrm{E}-01\) & \(3.754 \mathrm{E}-03\) \\
\hline Rx: -1. & Tx: 2. & NSp: 2. & Rx: 7 & 7. Tx: 1. & NSp: 5. \\
\hline 1005 & 336.156 & 0.50 .0 & 100 & 5114.302 & 0.40 .0 \\
\hline 2.8 & 2.51 .8 & 2.70 .0 & 3.0 & \(2.4-0.6\) & 2.90 .0 \\
\hline 0.0 & 0.02 .5 & 2.50 .0 & 0.3 & 0.42 .5 & 2.60 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(2.850 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(2.967 \mathrm{E}-03\) \\
\hline 0.375 & \(9.979 \mathrm{E}-01\) & \(3.343 \mathrm{E}-03\) & 0.375 & \(9.975 \mathrm{E}-01\) & \(4.090 \mathrm{E}-03\) \\
\hline 0.625 & \(9.967 \mathrm{E}-01\) & \(3.688 \mathrm{E}-03\) & 0.625 & \(9.968 \mathrm{E}-01\) & \(5.316 \mathrm{E}-03\) \\
\hline 0.875 & \(9.955 \mathrm{E}-01\) & \(3.484 \mathrm{E}-03\) & 0.875 & \(9.985 \mathrm{E}-01\) & \(5.026 \mathrm{E}-03\) \\
\hline 1.125 & 9.954E-01 & \(3.583 \mathrm{E}-03\) & 1.125 & \(9.941 \mathrm{E}-01\) & 7.688E-03 \\
\hline Rx: -2. & Tx: 2. & NSp: 3. & Rx : 8 & 8. Tx: 1. & NSp: 6. \\
\hline 1005 & 602.329 & 0.90 .0 & 100 & 5149.739 & 0.50 .0 \\
\hline 6.3 & 5.64 .9 & 5.80 .0 & 4.1 & \(3.5-2.0\) & \(4.4 \quad 0.0\) \\
\hline 0.1 & 0.15 .6 & 5.50 .0 & 0.5 & 0.63 .6 & 3.90 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(6.250 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(4.100 \mathrm{E}-03\) \\
\hline 0.375 & \(9.955 \mathrm{E}-01\) & \(7.167 \mathrm{E}-03\) & 0.375 & \(9.968 \mathrm{E}-01\) & \(5.615 \mathrm{E}-03\) \\
\hline 0.625 & \(9.934 \mathrm{E}-01\) & \(7.748 \mathrm{E}-03\) & 0.625 & \(9.957 \mathrm{E}-01\) & \(7.634 \mathrm{E}-03\) \\
\hline 0.875 & \(9.910 \mathrm{E}-01\) & \(7.582 \mathrm{E}-03\) & 0.875 & \(9.974 \mathrm{E}-01\) & \(7.248 \mathrm{E}-03\) \\
\hline 1.125 & 9.905E-01 & \(8.073 \mathrm{E}-03\) & 1.125 & 9.929E-01 & \(1.013 \mathrm{E}-02\) \\
\hline Rx: -3. & Tx: 2. & NSp: 4. & Rx: 9 & 9. Tx: 1. & NSp: 7. \\
\hline 1005 & 1125.703 & 1.20 .0 & 100 & 5166.572 & 0.60 .0 \\
\hline 7.9 & \(7.4 \quad 3.7\) & 8.00 .0 & 5.1 & \(4.5-5.3\) & 6.20 .0 \\
\hline 0.1 & \(0.2 \quad 7.4\) & 7.60 .0 & 0.6 & 0.74 .8 & 5.40 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(7.850 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(5.067 \mathrm{E}-03\) \\
\hline 0.375 & \(9.945 \mathrm{E}-01\) & \(8.901 \mathrm{E}-03\) & 0.375 & \(9.959 \mathrm{E}-01\) & \(6.971 \mathrm{E}-03\) \\
\hline 0.625 & \(9.918 \mathrm{E}-01\) & \(1.017 \mathrm{E}-02\) & 0.625 & \(9.941 \mathrm{E}-01\) & \(1.004 \mathrm{E}-02\) \\
\hline 0.875 & \(9.885 \mathrm{E}-01\) & \(9.688 \mathrm{E}-03\) & 0.875 & \(9.969 \mathrm{E}-01\) & 9.072E-03 \\
\hline 1.125 & 9.879E-01 & \(1.087 \mathrm{E}-02\) & 1.125 & \(9.909 \mathrm{E}-01\) & \(1.292 \mathrm{E}-02\) \\
\hline Rx: -1. & Tx: 1. & NSp: 1. & Rx : 5 & 5. Tx: 2. & NSp: 2. \\
\hline 1005 & 134.45 & 0.20 .0 & 100 & 5113.827 & 0.50 .0 \\
\hline 1.1 & 0.81 .3 & 0.70 .0 & 3.1 & 1.813 .3 & -0.1 0.0 \\
\hline 0.0 & \(0.0 \quad 0.7\) & 0.60 .0 & 0.6 & 0.71 .2 & 0.30 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(1.100 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(3.100 \mathrm{E}-03\) \\
\hline 0.375 & 9.991E-01 & \(1.549 \mathrm{E}-03\) & 0.375 & \(9.964 \mathrm{E}-01\) & \(3.737 \mathrm{E}-03\) \\
\hline 0.625 & \(9.985 \mathrm{E}-01\) & \(1.698 \mathrm{E}-03\) & 0.625 & \(9.969 \mathrm{E}-01\) & \(1.894 \mathrm{E}-03\) \\
\hline 0.875 & 9.982E-01 & \(1.847 \mathrm{E}-03\) & 0.875 & \(9.956 \mathrm{E}-01\) & \(3.634 \mathrm{E}-03\) \\
\hline 1.125 & 9.978E-01 & \(1.796 \mathrm{E}-03\) & 1.125 & \(9.942 \mathrm{E}-01\) & \(3.778 \mathrm{E}-03\) \\
\hline Rx: -2. & Tx: 1. & NSp: 2. & Rx: 6 & 6. Tx: 2. & NSp: 3. \\
\hline 1005 & 284.702 & 0.70 .0 & 100 & 5102.88 & 0.70 .0 \\
\hline 4.5 & \(4.0 \quad 3.8\) & 4.00 .0 & 3.6 & 3.25 .6 & 2.80 .0 \\
\hline 0.0 & 0.03 .9 & 3.80 .0 & 0.3 & 0.3 3.1 & 2.80 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(4.550 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(3.650 \mathrm{E}-03\) \\
\hline 0.375 & \(9.965 \mathrm{E}-01\) & \(5.431 \mathrm{E}-03\) & 0.375 & \(9.970 \mathrm{E}-01\) & 4.038E-03 \\
\hline 0.625 & \(9.948 \mathrm{E}-01\) & \(5.969 \mathrm{E}-03\) & 0.625 & \(9.954 \mathrm{E}-01\) & \(3.782 \mathrm{E}-03\) \\
\hline 0.875 & 9.936E-01 & \(6.061 \mathrm{E}-03\) & 0.875 & \(9.942 \mathrm{E}-01\) & 4.176E-03 \\
\hline 1.125 & 9.926E-01 & \(6.154 \mathrm{E}-03\) & 1.125 & 9.921E-01 & \(5.704 \mathrm{E}-03\) \\
\hline
\end{tabular}
continued next column ...
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(x:-3\) & Tx: & NSp: & Rx: 7. & Tx: & NSp: 4. \\
\hline 1005 & 618.171 & 0.90 .0 & 100 & 137.629 & 1.10 .0 \\
\hline 6.5 & 5.95 .9 & 5.90 .0 & 4.9 & 5.23 .3 & 5.50 .0 \\
\hline 0.0 & 0.05 .8 & 5.80 .0 & 0.5 & 0.85 .4 & 5.80 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(6.500 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(4.950 \mathrm{E}-03\) \\
\hline 0.375 & \(9.953 \mathrm{E}-01\) & \(7.565 \mathrm{E}-03\) & 0.375 & \(9.958 \mathrm{E}-01\) & \(5.128 \mathrm{E}-03\) \\
\hline 0.625 & \(9.928 \mathrm{E}-01\) & \(8.389 \mathrm{E}-03\) & 0.625 & \(9.928 \mathrm{E}-01\) & \(6.255 \mathrm{E}-03\) \\
\hline 0.875 & \(9.912 \mathrm{E}-01\) & \(8.971 \mathrm{E}-03\) & 0.875 & \(9.917 \mathrm{E}-01\) & 7.338E-03 \\
\hline 1.125 & \(9.901 \mathrm{E}-01\) & 9.208E-03 & 1.125 & \(9.875 \mathrm{E}-01\) & \(1.121 \mathrm{E}-02\) \\
\hline Rx: 5 & Tx: 1 & NSp: 3. & Rx: 8. & Tx: 2. & NSp: 5. \\
\hline 1005 & 66.619 & 0.70 .0 & 100 & 180.672 & 1.40 .0 \\
\hline 5.8 & 7.86 .8 & 7.90 .0 & 6.1 & 4.910 .6 & \(4.0 \quad 0.0\) \\
\hline 0.5 & 0.88 .2 & 8.90 .0 & 0.8 & 1.14 .7 & 4.3 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(5.800 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(6.050 \mathrm{E}-03\) \\
\hline 0.375 & \(9.969 \mathrm{E}-01\) & \(3.390 \mathrm{E}-03\) & 0.375 & \(9.945 \mathrm{E}-01\) & \(7.509 \mathrm{E}-03\) \\
\hline 0.625 & \(9.949 \mathrm{E}-01\) & \(3.018 \mathrm{E}-03\) & 0.625 & \(9.914 \mathrm{E}-01\) & \(7.931 \mathrm{E}-03\) \\
\hline 0.875 & \(9.936 \mathrm{E}-01\) & \(4.173 \mathrm{E}-03\) & 0.875 & \(9.895 \mathrm{E}-01\) & \(1.034 \mathrm{E}-02\) \\
\hline 1.125 & \(9.928 \mathrm{E}-01\) & \(3.740 \mathrm{E}-03\) & 1.125 & 9.822E-01 & 1.636E-02 \\
\hline Rx : & Tx: 1. & NSp: 4 & Rx : & Tx: 2. & NSp: \\
\hline 1005 & 82.479 & 0.30 .0 & 100 & 201.98 & 1.80 .0 \\
\hline 2.2 & \(2.3-0.7\) & 2.70 .0 & 6.8 & 5.014 .9 & \(3.4 \quad 0.0\) \\
\hline 0.2 & 0.22 .4 & 2.60 .0 & 1.0 & 1.74 .6 & 4.0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(2.233 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(6.800 \mathrm{E}-03\) \\
\hline 0.375 & \(9.985 \mathrm{E}-01\) & \(2.530 \mathrm{E}-03\) & 0.375 & \(9.932 \mathrm{E}-01\) & 8.989E-03 \\
\hline 0.625 & \(9.976 \mathrm{E}-01\) & 3.292E-03 & 0.625 & \(9.896 \mathrm{E}-01\) & 9.451E-03 \\
\hline 0.875 & \(9.983 \mathrm{E}-01\) & \(2.962 \mathrm{E}-03\) & 0.875 & \(9.870 \mathrm{E}-01\) & \(1.338 \mathrm{E}-02\) \\
\hline 1.125 & \(9.966 \mathrm{E}-01\) & \(3.754 \mathrm{E}-03\) & 1.125 & \(9.767 \mathrm{E}-01\) & 2.242E-02 \\
\hline Rx : 7 & Tx: 1. & NSp: 5. & Rx : 5 & Tx: 3. & NSp: 1 \\
\hline 1005 & 114.302 & 0.40 .0 & 100 & 118.451 & 0.20 .0 \\
\hline 3.0 & \(2.4-0.6\) & 2.90 .0 & 1.1 & 1.01 .3 & 1.00. \\
\hline 0.3 & 0.42 .5 & 2.60 .0 & 0.0 & 0.01 .0 & \(0.8 \quad 0.0\) \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(2.967 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(1.133 \mathrm{E}-03\) \\
\hline 0.375 & \(9.975 \mathrm{E}-01\) & \(4.090 \mathrm{E}-03\) & 0.375 & \(9.989 \mathrm{E}-01\) & \(1.165 \mathrm{E}-03\) \\
\hline 0.625 & \(9.968 \mathrm{E}-01\) & \(5.316 \mathrm{E}-03\) & 0.625 & \(9.983 \mathrm{E}-01\) & 9.317E-04 \\
\hline 0.875 & \(9.985 \mathrm{E}-01\) & \(5.026 \mathrm{E}-03\) & 0.875 & \(9.980 \mathrm{E}-01\) & \(5.988 \mathrm{E}-04\) \\
\hline 1.125 & \(9.941 \mathrm{E}-01\) & 7.688E-03 & 1.125 & \(9.974 \mathrm{E}-01\) & \(6.649 \mathrm{E}-05\) \\
\hline Rx: 8. & Tx: \(\quad 1\) & NSp: 6. & Rx: & Tx: 3. & NSp: 2. \\
\hline 1005 & 149.739 & 0.50 .0 & 100 & 77.889 & 0.50 .0 \\
\hline 4.1 & \(3.5-2.0\) & 4.40 .0 & 3.2 & \(3.3 \quad 3.1\) & 3.30 .0 \\
\hline 0.5 & 0.63 .6 & 3.90 .0 & 0.1 & 0.13 .3 & 3.20 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(4.100 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(3.200 \mathrm{E}-03\) \\
\hline 0.375 & \(9.968 \mathrm{E}-01\) & \(5.615 \mathrm{E}-03\) & 0.375 & \(9.976 \mathrm{E}-01\) & 3.026E-03 \\
\hline 0.625 & \(9.957 \mathrm{E}-01\) & \(7.634 \mathrm{E}-03\) & 0.625 & \(9.965 \mathrm{E}-01\) & 2.823E-03 \\
\hline 0.875 & \(9.974 \mathrm{E}-01\) & \(7.248 \mathrm{E}-03\) & 0.875 & \(9.955 \mathrm{E}-01\) & \(2.489 \mathrm{E}-03\) \\
\hline 1.125 & \(9.929 \mathrm{E}-01\) & \(1.013 \mathrm{E}-02\) & 1.125 & \(9.945 \mathrm{E}-01\) & \(1.624 \mathrm{E}-03\) \\
\hline Rx: 9 & Tx: 1 & NSp: 7. & \(\mathrm{Rx}: 7\) & Tx: 3. & NSp: 3. \\
\hline 10005 & 166.572 & 0.60 .0 & 100 & 90.974 & 0.90 .0 \\
\hline 5.1 & \(4.5-5.3\) & 6.20 .0 & 5.5 & 5.05 .6 & 4.90 .0 \\
\hline 0.6 & 0.74 .8 & 5.40 .0 & 0.2 & 0.34 .9 & 4.70 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(5.067 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(5.500 \mathrm{E}-03\) \\
\hline 0.375 & \(9.959 \mathrm{E}-01\) & \(6.971 \mathrm{E}-03\) & 0.375 & \(9.956 \mathrm{E}-01\) & \(6.040 \mathrm{E}-03\) \\
\hline 0.625 & \(9.941 \mathrm{E}-01\) & \(1.004 \mathrm{E}-02\) & 0.625 & \(9.929 \mathrm{E}-01\) & \(6.023 \mathrm{E}-03\) \\
\hline 0.875 & \(9.969 \mathrm{E}-01\) & 9.072E-03 & 0.875 & \(9.920 \mathrm{E}-01\) & \(5.754 \mathrm{E}-03\) \\
\hline 1.125 & \(9.909 \mathrm{E}-01\) & 1.292E-02 & 1.125 & 9.910E-01 & 4.228E-03 \\
\hline Rx : 5 & Tx: 2. & NSp: 2. & Rx : 8 & Tx: 3. & NSp: 4. \\
\hline 1005 & 113.827 & 0.50 .0 & 100 & 116.43 & 1.20 .0 \\
\hline 3.1 & 1.813 .3 & -0.1 0.0 & 6.9 & \(6.4 \quad 7.2\) & 6.20 .0 \\
\hline 0.6 & 0.71 .2 & 0.30 .0 & 0.4 & 0.56 .2 & 6.10. \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(3.100 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(6.900 \mathrm{E}-03\) \\
\hline 0.375 & \(9.964 \mathrm{E}-01\) & \(3.737 \mathrm{E}-03\) & 0.375 & \(9.945 \mathrm{E}-01\) & \(7.525 \mathrm{E}-03\) \\
\hline 0.625 & \(9.969 \mathrm{E}-01\) & \(1.894 \mathrm{E}-03\) & 0.625 & \(9.917 \mathrm{E}-01\) & 7.636E-03 \\
\hline 0.875 & \(9.956 \mathrm{E}-01\) & \(3.634 \mathrm{E}-03\) & 0.875 & \(9.902 \mathrm{E}-01\) & \(7.658 \mathrm{E}-03\) \\
\hline 1.125 & \(9.942 \mathrm{E}-01\) & \(3.778 \mathrm{E}-03\) & 1.125 & \(9.861 \mathrm{E}-01\) & \(3.846 \mathrm{E}-03\) \\
\hline Rx: 6. & Tx: 2. & NSp: 3. & Rx: 9. & Tx: 3. & NSp: 5. \\
\hline 1005 & 102.88 & \(0.7 \quad 0.0\) & 10005 & 126.677 & 1.40 .0 \\
\hline 3.6 & 3.25 .6 & 2.80 .0 & 7.8 & \(7.3 \quad 7.7\) & 7.30 .0 \\
\hline 0.3 & 0.3 3.1 & 2.80 .0 & 0.7 & 0.87 .3 & 7.20 .0 \\
\hline 0.125 & \(1.000 \mathrm{E}+00\) & \(3.650 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(7.800 \mathrm{E}-03\) \\
\hline 0.375 & \(9.970 \mathrm{E}-01\) & \(4.038 \mathrm{E}-03\) & 0.375 & \(9.938 \mathrm{E}-01\) & \(8.547 \mathrm{E}-03\) \\
\hline 0.625 & \(9.954 \mathrm{E}-01\) & \(3.782 \mathrm{E}-03\) & 0.625 & \(9.906 \mathrm{E}-01\) & \(9.114 \mathrm{E}-03\) \\
\hline 0.875 & \(9.942 \mathrm{E}-01\) & \(4.176 \mathrm{E}-03\) & 0.875 & \(9.887 \mathrm{E}-01\) & 9.689E-03 \\
\hline 1.125 & \(9.921 \mathrm{E}-01\) & \(5.704 \mathrm{E}-03\) & 1.125 & \(9.829 \mathrm{E}-01\) & \(3.243 \mathrm{E}-03\) \\
\hline
\end{tabular}
continued next column ...
continued next page ...

Sample .P-file (page 3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Rx: 6. & Tx: 4. & NSp: 1. & Rx: 8. & Tx: 5. & NSp: 2. \\
\hline 1005 & 105.289 & 0.30 .0 & 1005 & 174.9 & 0.90 .0 \\
\hline 0.5 & 1.51 .4 & 1.60 .0 & 5.5 & 4.85 .9 & 4.60 .0 \\
\hline 0.0 & 0.01 .5 & 1.30 .0 & 0.1 & 0.14 & 4.50 .0 \\
\hline 0.1251 & \(1.000 \mathrm{E}+00\) & \(5.500 \mathrm{E}-04\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(5.500 \mathrm{E}-03\) \\
\hline 0.3759 & \(9.986 \mathrm{E}-01\) & -1.598E-03 & 0.375 & \(9.957 \mathrm{E}-01\) & \(6.472 \mathrm{E}-03\) \\
\hline 0.6259 & \(9.977 \mathrm{E}-01\) & -3.941E-03 & 0.625 & \(9.934 \mathrm{E}-01\) & \(6.888 \mathrm{E}-03\) \\
\hline 0.8759 & \(9.973 \mathrm{E}-01\) & -6.582E-03 & 0.875 & 9.918E-01 & 7.339E-03 \\
\hline 1.1259 & \(9.969 \mathrm{E}-01\) & -8.923E-03 & 1.125 & 9.909E-01 & 7.333E-03 \\
\hline Rx: 7. & Tx: 4 & NSp: 2 . & Rx: 9. & Tx: 5. & NSp: 3 . \\
\hline 1005 & 118.16 & 0.50 .0 & 1005 & 219.989 & 1.10 .0 \\
\hline 3.9 & 3.15 .1 & 2.80 .0 & 6.9 & 5.977 & 5.60 .0 \\
\hline 0.1 & 0.32 .9 & 2.60 .0 & 0.1 & 0.25 .7 & 5.50 .0 \\
\hline 0.1251 & \(1.000 \mathrm{E}+00\) & \(3.950 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(6.867 \mathrm{E}-03\) \\
\hline 0.3759 & \(9.969 \mathrm{E}-01\) & \(4.885 \mathrm{E}-03\) & 0.375 & \(9.946 \mathrm{E}-01\) & 8.289E-03 \\
\hline 0.6259 & \(9.955 \mathrm{E}-01\) & \(4.878 \mathrm{E}-03\) & 0.625 & \(9.916 \mathrm{E}-01\) & 8.990E-03 \\
\hline 0.8759 & \(9.955 \mathrm{E}-01\) & \(4.978 \mathrm{E}-03\) & 0.875 & \(9.900 \mathrm{E}-01\) & \(9.768 \mathrm{E}-03\) \\
\hline 1.1259 & \(9.943 \mathrm{E}-01\) & \(4.872 \mathrm{E}-03\) & 1.125 & 9.891E-01 & \(1.055 \mathrm{E}-02\) \\
\hline Rx: 8. & Tx: 4. & NSp: 3 . & Rx: 8. & Tx: 6. & NSp: 1. \\
\hline 1005 & 154.637 & 0.90 .0 & 1005 & 254.35 & 0.90 .0 \\
\hline 6.3 & 5.54 .6 & 5.70 .0 & 5.6 & 5.15 & 5.10 .0 \\
\hline 0.1 & 0.25 .4 & 5.30 .0 & 0.0 & 0.050 & 4.80 .0 \\
\hline 0.1251 & \(1.000 \mathrm{E}+00\) & \(6.300 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(5.550 \mathrm{E}-03\) \\
\hline 0.3759 & \(9.952 \mathrm{E}-01\) & \(7.464 \mathrm{E}-03\) & 0.375 & 9.955E-01 & 6.023E-03 \\
\hline 0.6259 & \(9.925 \mathrm{E}-01\) & \(8.139 \mathrm{E}-03\) & 0.625 & 9.929E-01 & \(5.958 \mathrm{E}-03\) \\
\hline 0.8759 & \(9.920 \mathrm{E}-01\) & \(7.837 \mathrm{E}-03\) & 0.875 & 9.913E-01 & \(5.452 \mathrm{E}-03\) \\
\hline 1.1259 & \(9.905 \mathrm{E}-01\) & \(8.767 \mathrm{E}-03\) & 1.125 & 9.900E-01 & 4.752E-03 \\
\hline \[
\text { Rx: } \quad 9 .
\] & \[
\text { Tx: } \quad 4 \text {. }
\] & NSp: 4. & Rx: 9. & Tx: 6. & NSp: 2. \\
\hline 1005 & 176.787 & 1.00 .0 & 1005 & 349.726 & 1.20 .0 \\
\hline 7.5 & 6.3 4.2 & 6.70 .0 & 7.6 & 6.57 .1 & 6.50 .0 \\
\hline 0.2 & 0.36 .2 & \(6.0 \quad 0.0\) & 0.0 & 0.06 .4 & 6.10 .0 \\
\hline 0.1251 & \(1.000 \mathrm{E}+00\) & \(7.550 \mathrm{E}-03\) & 0.125 & \(1.000 \mathrm{E}+00\) & \(7.600 \mathrm{E}-03\) \\
\hline 0.3759 & \(9.941 \mathrm{E}-01\) & \(9.344 \mathrm{E}-03\) & 0.375 & 9.942E-01 & \(9.047 \mathrm{E}-03\) \\
\hline 0.6259 & \(9.907 \mathrm{E}-01\) & 1.040E-02 & 0.625 & 9.909E-01 & \(9.712 \mathrm{E}-03\) \\
\hline 0.8759 & \(9.910 \mathrm{E}-01\) & 9.613E-03 & 0.875 & \(9.888 \mathrm{E}-01\) & \(9.888 \mathrm{E}-03\) \\
\hline 1.1259 & \(9.890 \mathrm{E}-01\) & 1.142E-02 & 1.125 & \(9.870 \mathrm{E}-01\) & \(1.002 \mathrm{E}-02\) \\
\hline Rx: 7. & Tx: 5 . & NSp: 1. & & & \\
\hline 10005 & 122.581 & 0.60 .0 & & & \\
\hline 3.2 & 3.91 .5 & 4.20 .0 & & & \\
\hline 0.0 & 0.34 .1 & 4.60 .0 & & & \\
\hline 0.1251 & \(1.000 \mathrm{E}+00\) & \(3.200 \mathrm{E}-03\) & & & \\
\hline 0.3759 & \(9.972 \mathrm{E}-01\) & \(2.726 \mathrm{E}-03\) & & & \\
\hline 0.6259 & \(9.961 \mathrm{E}-01\) & \(3.387 \mathrm{E}-03\) & & & \\
\hline 0.8759 & \(9.950 \mathrm{E}-01\) & \(3.947 \mathrm{E}-03\) & & & \\
\hline 1.1259 & \(9.939 \mathrm{E}-01\) & \(3.943 \mathrm{E}-03\) & & & \\
\hline \multicolumn{3}{|l|}{continued next column ...} & \multicolumn{2}{|l|}{*** end of file ***} & \\
\hline
\end{tabular}

Sample .CL-file (first page only)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Sample Data} & \multicolumn{2}{|r|}{CRRED 7.01 data summary} \\
\hline Rcvr: 2. & Job : 00 & & Processed: 24 Nov 92 & \\
\hline Xmtr: 6. & Date: SEP & P 91 & A-Spacing: 200.0 m & \\
\hline NSp: 3. & Line: 10 & & Apparent Resistivity: & 96.052 - -m \\
\hline \multicolumn{3}{|l|}{0.125 Hz phase : RAW=} & \multicolumn{2}{|l|}{3.8 mr .} \\
\hline \multicolumn{3}{|l|}{0.125 Hz to 1. Hz PFE: RAW=} & \multicolumn{2}{|l|}{\(0.5 \%\)} \\
\hline \multicolumn{2}{|l|}{3 point DC phase} & : RAW= & \multicolumn{2}{|l|}{4.3 mr .} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Std Error of the MEAN}} & : MIN= & \multicolumn{2}{|l|}{\(0.1 \mathrm{mr} .\),} \\
\hline & & MAX \(=\) & 0.2 mr . & \\
\hline \multicolumn{5}{|c|}{RAW DATA} \\
\hline Freq (Hz) & Real & Imag & & \\
\hline 0.125 & 1.0000 & 0.0038 & & \\
\hline 0.375 & 0.9969 & 0.0035 & & \\
\hline 0.625 & 0.9960 & 0.0040 & & \\
\hline 0.875 & 0.9952 & 0.0030 & & \\
\hline 1.125 & 0.9941 & 0.0035 & & \\
\hline
\end{tabular}

\section*{Sample .Xnn-file Combination Plot SAMCR.X01}


\title{
Appendix C ... FILE DOCUMENTATION
}

\section*{.S-file Format (v2.0) CR / RPIP Averaged Data File}
```

"936L50S.S", from CRAVG 5.00
Rx: 2.0 Tx: 4.0 NSP: 1.0
1 0 4 18 18 82.7 588.0
SEM 0.0000E+00 0.0000E+00
1.4219 0.0693 171.
0.0747 0.2285 15.7
0.0426 0.4133 4.80
-0.0026 1.4776 0.375
2.955 -0.306 0.719
0.125 1.0000E 00 5.7426E-03
0.375 9.9734E-01 1.1810E-02
0.625 9.9471E-01 1.7281E-02
0.875 9.9243E-01 2.2393E-02
1.125 9.8993E-01 2.6757E-02
1.375 9.8754E-01 3.1019E-02
1.000 9.9118E-01 2.4446E-02
3.000 9.7520E-01 5.1194E-02
5.000 9.6105E-01 7.4148E-02
7.000 9.4681E-01 8.9063E-02
9.000 9.3649E-01 1.0505E-01
11.000 9.2290E-01 1.1720E-01
8.000 9.4165E-01 9.7557E-02
24.000 8.6712E-01 1.7926E-01
40.000 8.0799E-01 2.3717E-01
56.000 7.5174E-01 2.8224E-01
72.000 6.9981E-01 3.1128E-01
88.000 6.5208E-01 3.3569E-01

```

\section*{DESCRIPTION OF SAMPLE FILE VALUES, BY LINE NUMBER:}

The .S-file is composed of a two line header, followed by blocks of data, each containing data for one pseudosection data point. Each block begins with a line indicating the specific point, several lines of parameters, followed by an array of data that includes frequency, real and imaginary components for a number of points that describe a curve. The data in this file are always raw, averaged, decalibrated field data normalized to the low frequency real component.
1. File header line generated by the averaging program.

NOTE: Header line 1 occurs only at the beginning of the file.
2. Rx and Tx indicate the receiver and transmitter dipoles that were used for this block. Dipoles extend between two adjacent stations with the lowest numbered station entered for each dipole.

The 2 in this file indicates that the receiver dipole was positioned between stations 2 and 3 .
The 4 in this file indicates that the transmitter dipole was positioned between stations 4 and 5 .
-3 would indicate that the dipole was positioned between stations -3 and -2 .
N -SP \(=\mathrm{N}\)-Spacing \(=\) the number of A-Spacings between transmitter and receiver dipoles.
3. 1 Comm wire flag ( \(0=\) white wire \#2, \(1=\) black wire (W21C)

0 Times to pass the data curve through a harmonic filter
4 Levels of coupling coefficients
18 Harmonics to use when decoupling
18 Harmonics in data block array
82.7 Apparent Resistivity, RHO (ohmmeters)
588.0 A-Spacing (meters).
(Values included for LAB rock measurements are noted below)

\section*{RHO: dipole-dipole resistivity in ohmmeters =}


NOTE: RHO has been corrected to DC for decoupled data.

\section*{RHO: laboratory rock measurements in ohmmeters =}
\begin{tabular}{|c|c|c|c|}
\hline MAG & 1 & AREA & 1 m \\
\hline 4/pi & CRT & LENGTH & 0 cm \\
\hline
\end{tabular}

MAG = raw Fourier magnitude, in volts
4/pi corrects MAG from the Fourier magnitude to the Square-Wave magnitude
CRT \(=\) Current, in microAmps
LENGTH = Length of rock sample, in cm
AREA =Area of rock sample, in \(\mathrm{cm} * \mathrm{~cm}\)
NOTE: for laboratory rock measurements, RESISTOR, LENGTH, AREA, and CRT are included on this data line, following the A-Spacing.
4. Minimum and maximum SEM values, respectively. SEM: Standard Error of the Mean for Channel 1 (receiver dipole), at the fundamental frequency, in radians (for frequencies of 1.0 Hz and below only)
\(5,6,7,8\). Coupling coefficients, levels \(1,2,3,4\), respectively. The number of levels varies according to the third value on line 4 , as determined during manual decoupling. If the third number on line 4 is zero, the station has not been manually decoupled.
9. Hilbert response parameters: phase, slope 1, and slope 2.
10. The following lines are harmonic data with the 1 st, 2 nd and 3 rd columns listing frequency, real and imaginary components, respectively. The number of lines varies according to the fourth value on line 4.

\section*{.P-file Format (v2.0) CR / RPIP Processed Data File}

CRRED will create a .P-file as shown below with decoupling parameters if the .S-file has been decoupled. Otherwise, lines \(8,9,10\), and 11 will not be included in the .P-file.

\section*{.P-file EXPLANATIONS}

The .P-file is composed of blocks of data, each containing data for one pseudosection data point. Each block is composed of a line to indicate the specific point, several lines of parameters, followed by an array of data that includes frequency, real and imaginary components for a number of points that describe a curve.

Two flags appear on lines 3 and 5 - MSF and MZF ("9 1" in this file). They define the type of data in the array. They are duplicated in each block (as line 5).

The MSF flag describes the type of curve shown in the .P-file. Four columns appear in the description below. The first column shows the number that appears in the .P-file. The second column describes the option. The third column indicates whether this option is available with manual decoupling. The fourth column indicates whether this option is available with AUTO decoupling.
\begin{tabular}{|c|c|c|c|}
\hline MSF & CURVE TYPE M & MANUAL DECOUPLING & AUTO DECOUPLING \\
\hline 0 & RP parameters only (no curve data) & YES & YES \\
\hline 1 & Raw data (decalibrated) & YES & NO \\
\hline 2 & IP response & YES & NO \\
\hline 3 & Hilbert IP response & YES & NO \\
\hline 4 & Undefined & N/A & N/A \\
\hline 5 & Raw partial EM & YES & NO \\
\hline 6 & Normalized partial EM & YES & NO \\
\hline 7 & Total EM & YES & NO \\
\hline 8 & Raw Residual EM & YES & NO \\
\hline 9 & Normalized Residual EM & M YES & YES \\
\hline 10 & Experimental REM & NO & YES \\
\hline
\end{tabular}

NOTE: Undecoupled data points do not appear in this file.
The MZF flag describes the DC phase used during decoupling.
1: determined by manual decoupling program
2: 3PT LOW
3: 3PT HIGH
4: 4PT
5: Constant, specified by operator
Numbers 2-5 are used by the AUTO decoupling program.

\section*{.P-file Format (v2.0) (Continued)}

SAMPLE .P-FILE
```

LINE 1: \$ ASPACE= 200.0
2: "Sample.P", from CRRED 7.00
3: PLOT FILE FOR LPLOT 9 1
4: Rx: 2.0 Tx: 4.0 NSP: 1.0
5: 9 1 4 18 82.7 0.9 0.5
6: 5.7 2.5 0.0 0.0 2.3
7: 0.0 0.0 0.0 5.0 3.1
8: 1.422 0.069 171.
9: 0.075 0.228 15.7
10: 0.043 0.413 4.80
11: -0.003 1.478 0.375
12: 2.955 -0.306 0.719
13: -0.349 -0.287 -0.098 C C b
14: -0.338 -0.228 -0.080
15: 0.125 6.538E+01 -1.868E+02
0.375 5.208E+01 -1.553E+02
0.625 3.188E+01 -1.348E+02

```

\section*{DOCUMENTATION OF DATA FILE BY LINE NUMBER:}
\begin{tabular}{|c|c|}
\hline LINE: & EXPLANATION: \\
\hline 1: \$ ASPACE= 200.0 & :MODE line, defining A-Spacing in meters. \\
\hline 2: "Sample.P", from CRRED 7.00 & :Original name of .P-file and data processing program name and version number \\
\hline 3: PLOT FILE FOR LPLOT & :Header \\
\hline 9 & :MSF flag (Normalized Residual EM curve) \\
\hline 1 & :MZF flag (manual decoupling) \\
\hline 4: Rx: 2.0 & :Receiver location designator \\
\hline Tx: 4.0 & :Transmitter location designator \\
\hline
\end{tabular}

Dipoles extend between two adjacent stations, with the lowest numbered station entered for each dipole.

The 2 in this file indicates that the receiver dipole was positioned between stations 2 and 3. The 4 in this file indicates that the transmitter dipole was positioned between stations 4 and 5 .
-3 would indicate that the dipole was positioned between stations -3 and -2 .

\section*{.P-file Format (v2.0) (Cont'd)}

NSP: \(1.0 \quad: \mathrm{N}\)-spacing (number of a-spacings between receiver and transmit dipoles)

5: 9 :MSF flag
1 :MZF flag
\(4 \quad\) :Number of lines of coupling coefficients.
18 :Number of lines of harmonics.
82.7 :Apparent resistivity, in ohm-meters.

\section*{Dipole-dipole resistivity calculation:}


The first two terms in the expression correct for the Fourier magnitude, comm-wire resistance, and field preamplification. The product of these terms is the actual square-wave voltage of the received waveform.

The rest of the equation corrects for the transmitted current and the electrode geometry. For arrays other than dipole-dipole, the apparent resistivity must be calculated by hand.
** Comm-wire attenuation factors at 0.125 Hz (W21C wire)
Number of reels \(=0 \quad 1.0000=\) Attenuation factor
10.9519
20.9070
30.8664
40.8285
50.7946
\(6 \quad 0.7624\)
\(7 \quad 0.7334\)
\(8 \quad 0.7062\)
NOTE: RHO has been corrected to DC for decoupled data.
** applies to referenced CR data.

\section*{.P-file Format (v2.0) (Continued)}
0.9 :Raw percent frequency effect (PFE).

\section*{Percent Frequency Effect Calculation}
```

 PFE= 100 * (Mag1-Mag8) / Mag8
 where Mag1 = 1st harmonic magnitude
 Mag8 = average magnitude of 7th + 9th harmonics, in volts.
 Mag8 = (Mag7 + Mag9)/2
 where Mag7 = 7th harmonic magnitude
 Mag9 = 9th harmonic magnitude
 0.5 :IP PFE.
6: 5.7 :Raw low frequency phase,
2.5 :3pt low DC phase,
0.0 :3pt high DC phase,
0.0 :4pt DC phase.

```

The latter two values are determined for AUTO decoupling, not for manual.
\begin{tabular}{|c|c|}
\hline 2.3 & :Calculated 3-point DC phase ( \(\phi_{3 \mathrm{pt}}\) ): \\
\hline \(\phi_{3 p t}\) & \(=(15 / 8) * \phi_{1}-(10 / 8) * \phi_{3}+(3 / 8) * \phi_{5}\) \\
\hline where \(\phi_{1}\) & \(=\) harmonic phase at fundamental frequency \\
\hline \(\phi_{3}\) & \(=\) harmonic phase at third harmonic \\
\hline \(\phi_{5}\) & \(=\) harmonic phase at fifth harmonic \\
\hline 0.0 & :Minimum SEM \\
\hline 0.0 & :Maximum SEM \\
\hline 0.0 & :undefined \\
\hline 5.0 & :1.00 Hz IP phase, in milliradians \\
\hline 3.1 & :0.125 Hz IP phase, in milliradians \\
\hline
\end{tabular}

\section*{.P-file Format (v2.0) (Continued)}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{8,9,10,11} & : Coupling coefficients, leve to the third value on line 5, is zero, the station has not be \\
\hline 12 : & 2.955 & :Hilbert response parameters \\
\hline & -0.306 & \(: \longrightarrow\) \\
\hline & 0.719 & : \\
\hline \multirow[t]{5}{*}{13:} & -0.349 & :Spectral type values \\
\hline & -0.287 & (1.0-8 \\
\hline & -0.080 & (8.0-88 \\
\hline & C C b & : Spectral type characters fo curve segments in the freque \\
\hline & & Curve types are defined as f \\
\hline \multirow[t]{3}{*}{14:} & -0.338 & :Derivatives ( \(.125-1.0 \mathrm{~Hz}\) ) \\
\hline & -0.228 & (1.0-8.0 Hz) \\
\hline & -0.080 & (8.0-88.0 Hz) \\
\hline
\end{tabular}

These values represent the slopes of curve segments in the real vs imaginary plane for the decoupled IP response.

\section*{Harmonic data:}

The type of data is determined by the MSF and MZF flags as described above. The number of lines varies according to the fourth value on line 5 .

15:
\begin{tabular}{rl}
0.125 & :Frequency, in hertz \\
\(6.538 \mathrm{E}+01\) & :Real component \\
\(-1.868 \mathrm{E}+02\) & :Imaginary component
\end{tabular}```

